TPA Grant Program Still Alive and Well!

By Susan Trask

Most of our readers know that the Taylor Pond Association has been consulting with property owners and awarding grant monies toward lake-friendly improvements. Last year we took a break as we re-evaluated our procedures and streamlined the process. We’re glad to report that the grant program is up and running once again, and it’s simpler than ever.

Board president Dana Little and member Kristi Norcross have been trained as LakeSmart evaluators, which means that we will no long need to use outside consultants to advise property owners as to the best practices to employ when improving their property. Keeping our program entirely in-house will both expedite the process and save the Association some money.

Because one of TPA’s main goals is to educate residents about ways that they can help ensure the health and beauty of our lake, we offer grants to those who wish to make improvements to their watershed properties. Here’s how the program works:

  1. You must be a TPA member. Road associations who apply must have at least 50% of the residents be members.
  2. Call Kristi Norcross (577-6408) or email her ([email protected] ) with your interest in making improvements to your lakeside property.
  3. Kristi will set up an appointment at a mutually convenient time for Dana or her to visit your property to discuss the improvements you wish to make. After your discussion they will write up a report of the suggested improvements.
  4. Complete any or all of the work recommended, saving all invoices. You may also count personal work, so keep track of any man-hours you expend. You do not need to complete all the items recommended. The items you do complete should comply with the best practices outlined in the report.
  5. Alert Kristi that the project has been completed. Either she or Dana will come by to view the work that’s been done and write up a summary.
  6. Submit your invoices and other records to Kristi.
  7. The Board will determine if the work done complies with the best-practice standards outlined. If it does, a matching grant of up to $500 will be awarded. (In other words, $1000 or more would need to be expended in order to receive the full $500.)
  8. Note: If the follow-up evaluation reveals that steps have been taken that are not in the best interests of the lake, the Board reserves the right to deny the grant request. To avoid having this happen, be sure to consult with Dana or Kristi before making any changes that are not in the original recommendations.

Important note: Even if you do not plan to apply for the matching grant, TPA will provide the initial consultation and recommendations for you at no cost to you. How can you go wrong?? There are no strings attached and no requirements at the outset other than a desire to learn about good lakeside stewardship.

WATER QUALITY SUMMARY FOR TAYLOR POND – 2016

By Woody Trask

In summary, 2016 was a better than average year for water clarity, including one reading that was just slightly higher than the previous record. Water levels were unusually low due to dry conditions, which may explain the high clarity readings, since fewer rain events meant less soil and nutrients being washed into the pond. Phosphorus level and the associated possibility of an algae bloom continue to be a major concern. However, I’m not aware of any blooms being reported.

The full battery of tests (color, pH, alkalinity, conductance, phosphorus and clarity) was conducted monthly from June through September, with additional clarity readings taken bi-weekly to establish a good data base. Phosphorus analyses of water samples taken from the surface and bottom of the pond were performed by the State of Maine Health and Environmental Testing Lab in Augusta. Surface samples showed no increase in phosphorous levels compared to last year but the bottom samples were higher and will be closely monitored in 2017 to see if it is a trend or just an anomaly.

Even though the testing results for clarity included the best ever single reading, the average was about the same as last year. The readings averaged 5.39 meters (17.7 ft.) which is quite high compared to the historical average of 4.64 meters (15.2 ft.) — a positive indicator of the health of the Pond.

The overall water quality of Taylor Pond is considered to be average compared to all Maine lakes. Barring a major environmental event that causes significant soil erosion and phosphorus-rich run-off entering the pond, the water quality is expected to remain stable going forward.

The ice-out date for spring 2017 was recorded as April 19, which is a whole month later than last year and close to the historical average of April 14th. The pond also froze over the third week in December compared to January 5th last year. This was good, since a longer period of ice cover is generally considered beneficial to overall water quality.

Why is it called Taylor Pond?

By Joan Macri

While no one can say for sure, according to an article in the Lewiston Evening Journal in the 1940’s by Stanley B. Attwood, a woman named Mrs. Ruby A. Briggs maintained that a Thomas Taylor and his brother Joshua had a land grant dating back to the 1700’s (400 acres) between the Androscoggin River and Wilson’s Great Pond (now Lake Auburn) that may have surrounded the entirety of Taylor Pond. In “Now and Then at Taylor Pond” by Helen Andrews (1985), several other theories are offered in addition to the Taylor brothers concerning various Tylors and Tylers dating back to early land grants as far back as 1735. The surveyor Phillip Bullen’s map of the area, drawn in 1798, does contain the name Wilson’s Great Pond but no label on our favorite lake.

Taylor Pond Water Levels Engineering Study

By Susan Trask

On the first weekend in June of 2012, Auburn received nine inches of rain in just three days. This event resulted in major flooding issues at the south end of Taylor Pond. Some residents were surrounded by water for up to two weeks, with basements flooded and sewage backing up through shower drains. In the fall of that year, the Taylor Pond Association convened a special committee to study the issues concerned with water levels. Over the next several years, the committee met with Auburn city officials, land use consultants, surveyors and environmental engineers in order to more fully understand how both natural and man-made features affect Taylor Pond’s water levels.

It has become clear that any possible remediation efforts need to be done carefully and in consultation and coordination with City and State entities. The City of Auburn funded a study of the Hotel Rd. culverts and then applied for a grant from the DEP to rebuild them. The application was denied in part because it did not include a study of the bridge and dam on the Kendall property downstream. The City asked the TPA to fund a further study, which after careful consideration, we agreed to do. The Board of Directors voted unanimously to authorize up to $10,000 in order to fund that study. Environmental engineering firm Wright-Pierce is currently collecting all available information and will construct a hydraulic model in order to analyze the effects of all the identified factors downstream of the Pond. Project Manager Joe McClean has been directing this study and has been in frequent communication with the Board. Special thanks go to board member Marc Tardif for all his diligent behind-the-scenes work on this project!

Joe McClean will be the featured speaker at the TPA Annual Meeting on August 6. Please make every effort to come and to be informed about the study’s findings to date and learn about next steps. We did receive the good news that the City’s second application to the DEP for the Hotel Rd. project was approved for $95,000. The results of the study that we are funding will certainly inform the new construction, and we look forward to continuing to work with the City, DEP and FEMA on this important project.

Looking Back: When Simpson’s Beach was Rice’s Beach

By Joan Macri

For the first half of the twentieth century, on a hot summer’s day, Rice’s Beach, now known as Simpson’s Beach, was the place to go. Located on the east shore of Taylor Pond  just off of Hotel Road, Rice’s Beach was a public beach that offered lovely white sand, benches, swing sets, teeter-totters, bath houses, and McGlinchey’s Store, where one could buy anything from franks to potato chips and soft drinks—just what one needed for a day at the beach. Over time, the bathhouses were replaced by four small rental cottages that were in high demand in the summer months.

Young swains would take their lady friends paddling in the canoes available for rent, occupy the benches overlooking the beach to enjoy a fine sunset, and finish off a perfect Saturday by enjoying a dance or two at Roy Wallingford’s dance pavilion, “The Showboat.”

Various camps encircled the beach. Some of the same families still own these properties today and have vivid memories of what Rice’s Beach once was and what is became over time.

David Rand’s family bought their place on Willard Road in 1932. He was three at the time and has spent his entire life observing all the changes. A civil engineer for the Maine DOT who surveyed the original path for the Maine Turnpike from Augusta to Sidney, he still thinks like the surveyor he once was and produced the wonderful maps seen below.  Drawn from memory, they vividly capture the amusements offered by Rice’s Beach and eventually Simpson’s Beach until the entire property was purchased by the Toussaint family in the 1990’s.

Mr. Rand recalls being struck by the way the four small cottages that replaced the original bathhouses were constructed. Built by Thomas Simpson when he took over ownership of the beach in the 1960’s, they were constructed largely of scrap lumber he had left over from his contracting jobs in town. According to Mr. Rand, Tom Simpson was “a clever carpenter who could get a cheap job that looked good.”  While they may have been “cute” in Mr. Rand’s then-young eyes, they were not built to last. Each cottage’s foundation was a 4’ by 8’ wooden board placed directly on the ground!

A boathouse close to the beach rented canoes by the hour.  A big swim raft and an enormous wooden diving platform dominated the water well into the 1950’s. By that time, the area was called Simpson’s Beach. Ken Lord, whose family bought their camp in 1943 on what is now Waterview Drive, remembers the attractions of the beach well. The beach area was public. There was a large building enclosed by screens with an arcade, a snack bar, popcorn machine, and an open area. According to Lord, it was akin to anything to be found in Old Orchard Beach, the exemplar of all things summer in those days. Behind this building was an old black train engine and sometimes even pony rides.

According to Lord, “the big attraction for us was the diving platform.” It contained three diving boards, the highest at 20 feet above the water. Lord was under strict instructions from his parents that he and his twin brother Keith were NOT to venture onto the highest board—so of course he did. He called himself a dare-devil back in those days and one day decided to not only go off the high board but to do a back flip! And he injured his neck. When he returned home, his mother immediately noticed there was something wrong and asked what he had done to his neck. He said “I don’t know” and his parents panicked. This was the early 1950’s and people were terrified of polio. They called Dr. Gross who immediately came to the house. Yes, doctors still made “house calls” in those days. The doctor examined Lord carefully and then assured the parents that, although he was not sure what was wrong with the neck, it was not polio. And, of course, Lord did not “fess-up.” After the Lords said goodbye to the doctor, they called Dr. Andrews, a chiropractor who lived nearby, who came over and manipulated Lord’s neck—and fixed the problem. When Dr. Gross returned the next day to check on his patient, he was amazed at the improvement in Lord’s neck. No one mentioned anything about the second house call the previous day. In the end, neither the doctor nor the parents were any the wiser.

Today Simpson’s Beach belongs to the Toussaint family and is private, but traces of its earlier history can still be seen. The stone seawall with a high curved arch is still there and a large wooden diving platform graces the cove, providing a great deal of fun for both the extended Toussaint Family as well a one particular cormorant who likes to survey the upper end of the pond from his perch high on the platform.

Thanks to David Rand and Kenneth Lord for their memories.

Resources include information from “Now and Then at Taylor Pond” (1985) by Helen Andrews and the Androscoggin Historical Society

Crayfish

By Dana Little

Hiding in the shallows around Taylor Pond you will find a small relative of the lobster called the crayfish. Typically a few inches long they hide out amongst rocks and logs. Scientists call the group of animals containing crayfish decapods (Greek term for ten-footed) due to having one pair of legs for each of the five segments of the thorax. Crayfish have a total of 20 segments to their body and each segment has an appendage. Each pair of appendages may serve a different purpose, some as mouthparts, one pair in front as legs with large pinching claws, nine smaller legs each with small pinching claws and the last few form part of the tail. Crayfish belong to the group of animals called crustaceans which includes crabs, lobsters and shrimp. In turn, crustaceans belong to the group of animals called arthropods (Greek for jointed feet) which includes insects and spiders. All arthropods have skeletons on the outside of the body (exoskeleton), a three segmented body (head, thorax and abdomen) and jointed appendages.  

Dr. Karen Wilson works at the University of Southern Maine teaching limnology (the study of freshwaters) and ecology. She contacted volunteers in 2016 to trap as many crayfish as possible from lakes in Maine. She has studied the effect of alien species of crayfish in lakes and the loss of plants and animals that results.  Alien crayfish have been introduced into Maine lakes when fishermen release unused bait crayfish either intentionally or unintentionally. Through her research she hopes to find the extent of invasion and the species found typically in Maine lakes. As part of her research I placed a trap for crayfish in the Taylor Pond last summer but caught no specimens. Fortunately I had a young partner, Merlin Smith, who provided me with many samples that I sent in to be identified. His technique of wading in the shallows and hand-catching produced many fine specimens! The results of Dr. Wilson’s studies have not yet been published.

Crayfish will eat almost anything organic, feeding upon both living and dead parts of animals and plants, in effect recycling otherwise wasted energy. They convert organic matter that is inedible to most animals into a delicious package. In Louisiana I have been served up trays containing dozens of “crawdads”, (their term for crayfish). One only eats the tails and I can attest to their being delicious. People locally seldom eat them, and, given the difficulty in catching them and their ability to concentrate pollutants in the water, this is probably wise. However I have watched herons and diving ducks feed on them with enthusiasm. Many animals prey on them including muskrat, mink, raccoon, pike, pickerel and bass. Over 400 different species can be identified in the US, but only seven species are native to Maine.  Although they have sharp claws to protect themselves and grab prey, they will not pinch you unless handled. The largest arthropod native to our pond, the amazing crayfish is best left alone to freely roam the water.

Memories of Taylor Pond July 2016

By Joan Macri July 2016

Life on Taylor Pond has been a treasured experience for generations. Efforts have been made in the past to chronicle this history, most notably in the book Now and Then at Taylor Pondby Helen Andrews in 1986. That was 40 years ago and much has changedbut much has remained the same. While many more homes are year-round, they remain family-focused and more often than not, multi-generational. The Taylor Pond Association is interested in collecting stories and memories from people who have spent many years on the pond in order to hold on to that history. If you have some memories to share, please contact Joan Macri at [email protected].

Nancy Weber has been spending her summers on Taylor Pond since 1949. In the 1930s her grandmother, Bertha Rattigan, and her four siblings each bought camps next to one another on what is now Taywood Road. Descendants still occupy 4 of the original homes.

Nancy recalls that her grandmothers passion was to be at Taylor Pond as early in the spring and as late in the fall as possible. Bertha was a determined woman so she made it happen despite working as a weaver at the Bates Mill and walking to and from the mill each day. That is approximately 12 miles round trip and this was before the buses made pick-ups at the intersection of Park Avenue and Lake Street. No wonder she lived to be 91!

Nancy remembers her grandmothers cottage well. No heat, no electricity, no running water, no fireplace. A wood stove to cook on, heat water and make the best toast everby just placing the bread on top of the stove. Everyone washed up in the pond using little wire cages with bits of soap in them to create a lather, brushing your teeth and spitting from the steps. Ivory soap was the preferred choice because it floated.

With no running water, rain barrels were used to capture water for washing dishes and the entire family would drive to the Spring Road in Auburn with gallon jugs to fill from the natural spring so they would have drinking water for the week.

There was no garbage service so people burned what little trash they created or buried it. Years later, Nancy was working in her garden and discovered lots of buried glass bottles.

People had outhouses back then. Rather than awful, Nancy thought her grandmother’s was “inspirational.” It was papered with old calendars’ scenic sites across the country, such as the Grand Canyon and Pike’s Peak. And yes, it was a one-holer.

Favorite summer memories include:

  • using a path through the woods to Black’s Store (the small pointed roof building at the intersection of Hotel and Lake Street) for popsicles,
  • a single bed metal coil box spring hammocked between two pines with a thin pallet on top and a Bates coverlet. “You could just lie there and hear the hum of the pines, feel the air, smell it”
  • an owl that came every summer and a very large turtle that is still around
  • going to see a water ballet performance at Simpson’s Beach where they had spotlights focused on the synchronized swimmers.—quite a sight for her 5 year old eyes
  • spending time with all her many relatives,
  • the clarity and coolness of the water

Peter Durgin has been coming Taylor Pond since he started dating Judy Pontbriand in the 1950s. Her father Bert built a home in the 1950s and his family was the first to live year-round on East Shore Road. Peter eventually built a year-round house next door to the Pontbriands in 1984.

Peter remembers the days when there were no shooting restrictions in Auburn and people duck- hunted on the pond. It was not at all unusual for people to shoot ground hogs who were dining on their gardens. The fishing was terrific and the pond contained many different types of fish: pike, large and small mouth bass, white and yellow perch, pickerel, brown trout, and splake, a hybrid of a brook trout and a lake trout that does not reproduce.

Both Peter and Nancy noted the increase in population of people and watercraft over the yearsbut agree that the ponds water quality has remained excellent. According to Peter, people are doing a great job of protecting the lake from chemicals even with the population growth.But he would like to see people slow down on the roads. He believes people unintentionally damage the pond by driving too fast on the roads. The roads, largely dirt and gravel, develop pot holes and hummocks in the center. Water cant easily run off, the dirt and gravel get carried to the wetlands and then the pond, not an ideal situation. Even where no speed limit is posted, 10 MPH is the recommended speed.

As always, it is in everyones best interest to protect the pond so that our children, grandchildren, and all those who come after us can enjoy its natural beauty and the role it plays in making our lives better. Just as Nancy and Peter treasure their memories of life on Taylor Pond, we hope that our children and grandchildren will be able to do the same.

 

Winter on Taylor Pond July 2016

By Joan Macri July 2016

Over the years many people have enjoyed ice sailing. Nothing quite beats sailing across the ice with the wind at your back! Peter Garcia of West Shore Road has had a sail boat for many years and in approximately 2004, TJ Thayer took it for a spin.

Well into the 1950’s many scores of local men earned money in the winter by harvesting ice. Wesley Urquhart lived on the west side of the pond and had an ice operation. The ice would be cut into huge slabs, often more than 20 inches thick, floated in channels that had been cleared to the “haul way” where they would be pulled ashore and stored in hay in an ice house. When Peter Durgin bought his property on Waterview Road from Sumner Peck, he found debris from the ice operation including lumber, chains, belts, and pull-ups. If you boat near the edge of the property, you can still see the 12” square wooden stanchions filled with rocks that marked the entrance to the haul way. The ice was used in ice boxes throughout the community. Prices probably varied from 15 to 60 cents depending upon supply and demand as evidenced by the sign Peter Durgin discovered in the old Lake Auburn Ice Company when he was a teenager.

Winter on the pond is always special. The colder is gets, the more still the air becomes. Sheeted in crystal and white, it is a lovely image to hold onto for those hot sun-filled days of summer!

The Return of Salmon to Taylor Pond? Not Soon. July 2016

By Dana Little July 2016

NOAA (National Oceanic and Atmospheric Administration) has recently identified eight species of wildlife as being most at risk for extinction. The Atlantic Salmon of the Gulf of Maine is on that list. Fisheries biologists agree that one of the most effective ways to restore salmon to their native habitat is the removal of dams or with the use of fish ladders to bypass dams. The US Fish and Wildlife Service describes the Little Androscoggin River as providing “the best opportunities for Atlantic Salmon spawning and rearing”.

A salmon spends the first half of its life, one to four years, in freshwater rivers and streams and then migrates to the ocean to mature and fatten up. After one to four years in the ocean salmon return to their waters of origin to lay their eggs. Scientists have discovered that they use their keen sense of smell to find their birthplace; only 5% of fish travel up the wrong river.

Salmon once swam abundantly in the waters of the Androscoggin River all the way up to Rumford Falls. Because Taylor Pond drains into Taylor Brook, which feeds into the Little Androscoggin River and from there into the Androscoggin River, at one time salmon likely travelled through our pond and spawned in local brooks. A 1673 a commercial fishing operation at Pejepscot Falls in Brunswick preserved 40 barrels of salmon and would have taken more fish but they had no more salt in which to preserve them for export. In 1793 an Abenaki Native American, Perepole, described the Androscoggin River. In reference to the falls in Rumford, he claimed “the Indians used to catch the most salmon at the foot of them falls”.

By the early 1800s, mill dams illegally constructed on the Androscoggin River destroyed the great fish runs. The last Atlantic Salmon on the river was seen in 1816 at Great Falls in Lewiston. Despite petitions to restore the fish runs, the Maine Legislature refused to enforce existing laws requiring fish passage around the Androscoggin’s dams. In the early 1900s large pulp and paper mills were built upriver and dumped large amounts of pollutants into the water. In addition, towns along the river dumped raw sewage, contaminating the water.  By the 1960s the Androscoggin was one of the most polluted American rivers. Today, pollution has been markedly reduced and water quality in the Androscoggin is capable of supporting a healthy salmon population. However, the dams continue to block fish passage.

Under the Endangered Species Act the US Fish and Wildlife Service (USF&WS) develops a recovery plan for each species in danger of extinction. This March the USF&WS submitted a draft recovery plan for the subpopulation of Atlantic Salmon unique to the Gulf of Maine. The estimated total cost for this plan is a third of a billion dollars with expenses spread out over the next 75 years. No money has been raised for this plan; funding occurs through smaller federal grants aimed at more achievable objectives such as fish passage around certain dams.The recovery plan itself is an overall description of goals, methods and ways to measure outcomes.

 For a salmon to travel from the ocean to Taylor Pond it would need to ascend the Androscoggin Dam in Brunswick, the Pejepscot and Worumbo Dams on the Androscoggin River, the Lower and Upper Barker Mill Dams on the Little Androscoggin River, and finally the dam at Dag’s Bait Shop and Kendall’s dam on Taylor Brook.  Although the fish ladders at the Androscoggin, Pejepscot and Worumbo dams have existed for years, salmon have not been observed above the Brunswick dam.  The alewife, a smaller fish, has also been unable to significantly traverse these barriers.  Annually, the Department of Marine Resources catches alewives at the Androscoggin Dam and distributes them to many ponds that drain into the Androscoggin River, including about 3,800 fish to Taylor Pond.  

Sean McDermott of NOAA, based in Gloucester, MA, recently contacted Taylor Pond Association for help in obtaining a grant to study the creation of a fish passage for alewives around the Lower Barker Mill Dam on the Little Androscoggin River.  The process to relicense this dam began in 2014 and will be completed in 2019.  The Federal Energy Regulatory Commission (FERC) requires any dam to minimize harm to the environment.  Because of intense competition for limited funds, Sean’s grant was not funded, making the free passage of salmon and other fish from the ocean to Taylor Pond for now a dream, not a reality.  Under the Endangered Species Act we may still see funding to restore this unique subspecies of Atlantic Salmon to the Taylor Pond watershed.  The Department of Marine Resources (DMR) continues to work to allow fish to freely travel the Androscoggin River.  Dan Kircheis of the DMR believes that “There is a lot of potential to the Androscoggin” [for salmon].  The fact that a few salmon continue to show up year after year at the Brunswick fish ladder demonstrates their resilience and the possibility that someday they may once again be seen in Taylor Pond.

Taylor Pond Water Quality Reports Archive 2009-2016

2016 Taylor Pond Water Quality Report 

by Woody Trask

This report summarizes the findings of the 2016 water quality monitoring program for Taylor Pond in Auburn, Maine (MIDAS ID#3750). Readings and samplings were conducted monthly from June through September. Additional Secchi readings were taken throughout the summer. Since 2004 Taylor Pond Association has been collecting its own water samples and performing most tests.  Phosphorus analysis was conducted by the DHHS Health and Environmental Testing Laboratory in Augusta.

Result summary: Most results were quite consistent with readings for the past few years with two exceptions – total bottom phosphorus and maximum Secchi (clarity) reading.  A high phosphorus reading for the bottom sample in September might be explained by the sampling method since samples have been taken at a depth of 12 meters from the surface and, with extreme low water conditions this year, it means the last sample taken was closer to the bottom of the pond than samples taken in past years.  The second notable change was in the maximum Secchi reading which at 6.52 meters was just slightly higher than the maximum ever recorded. No changes in color, pH, alkalinity or conductance were observed. The “ice in” date was January 5th and the “ice out” date was March 19th, making for perhaps the shortest iced over period. A short period of ice cover is generally considered not good for the health of the pond. The historical average for ice out is April 14.

The results of this year’s monitoring are given below:

Parameter2016Mean for Taylor Pond   since 1975 Historical Mean for all Maine Lakes
Color2021.0728
pH7.27.06.82
Alkalinity2016.711.9
Conductance8989.946
Total Phosphorous   5m core sample, µg/L 11.5   vs. 11.7 in 2015 10.1312
Total Phosphorous   bottom grab, µg/L 25.8   vs. 17 in 2015 25.31(not published)
Secchi depth (meters) minimum4.5   vs. 4.45 in 2015 1.7 (minimum ever recorded)0.5   (0.9 in 2012)
Secchi depth mean (m)5.39   vs. 5.48 in 2015 4.644.81   (5.2 in 2012)
Secchi depth maximum6.52   vs. 6.09 in 2015 6.52 (maximum ever recorded)15.5   (13.4 in 2012)
Trophic State (by Secchi disk)35.750.6045
Trophic State (by core Total Phosphorous)39.443.2(not published)

Color:  Organic material that remains from dead plants and animals provides most of the water color.  Lakes drained by areas with more coniferous forests tend to be brown in color due to the slow degradation of the leaves of these trees.  Taylor Pond had a color measured at 20 in 2016, which is the same as 2015 and lower than the mean for all Maine lakes of 28.  When the color is greater than 25 a lake is considered “colored” and the transparency is reduced.   

PH:  A measure of the acid-base status of the pond.  Taylor Pond had a pH of 7.2 in 2016 which is slightly higher than the mean of 6.82 for all Maine Lakes.  Acid rain caused by industrial pollutants can cause the pH in lakes to drop below 6.  This drop in pH kills off the healthy zooplankton (microscopic animals) leading to death of fish and overgrowth of algae.   The pH of Taylor Pond has been very stable over the years.

Alkalinity:  A measure of the capacity of the water to buffer against a change in the pH.  Taylor Pond’s alkalinity in 2016 was 20 (the same as last year) compared to a mean for all Maine lakes of 11.9.  This indicates that our pond is unlikely to have a problem with acidity.  The level of alkalinity in Taylor Pond has remained little changed and is not of concern. 

Conductance:  Conductance indirectly measures the relative number of dissolved ions in the water — the higher the concentration of ions the greater the conductance. Conductance is used as a rough estimate of the amount of pollutants which usually are present as ions.  Although conductance is easy to measure it is not considered highly reliable.  Taylor Pond’s conductance for 2016 was 89 compared to a historical mean of 89.9 and a mean of 46 for all Maine lakes.

Total Phosphorous:  The phosphorus Measurement of phosphorous provides the most reliable measure of the capacity of Taylor Pond to have an algal bloom.  Algae in Maine waters tend to be limited by the phosphorous content of the water.  If you provide enough phosphorous algae grows rapidly.  Algae cause depletion of oxygen in the water which kills animal life, colors the water green and when it dies creates unpleasant odors.  Taylor Pond’s phosphorous was done using a 5 meter core and bottom grab sampling technique.  Taylor Pond’s core sample phosphorous readings this year averaged 11.5 µg/L which is close to the historical mean of 10.11 and slightly lower than the 12 reported for all Maine lakes.  It is also below the critical level of 15, at which level one tends to see algal blooms.  Lakes are categorized as oligotrophic (low level of biologic productivity), mesotrophic (intermediate) or eutrophic (high biologic productivity) based on how much phosphorous they contain.  A lake with a phosphorous of less than 10 is considered oligotrophic, between 10 and 30 is considered mesotrophic and over 30 is considered eutrophic.  The bottom grab sample average of 25.8 ppm was considerably higher than past years but was almost identical to the historical average.

Secchi Disk:  Secchi disk readings provide the easiest method for measuring the clarity of the water.  Algae, zooplankton (microscopic animals), natural water color and suspended soil all reduce the transparency of the water.  Algae cause most of the change in transparency in Taylor Pond.  The mean transparency for 2016 was 5.39 meters, 0.09 m lower than last year and significantly higher than the historic average for Taylor Pond of 4.64 and higher than the historical average for all Maine lakes. The higher than normal readings may have been due to the unusually dry summer which resulted in less suspended matter being introduced into the pond.

Trophic State:  This is a measure of the biologic productivity of the pond — the higher the number, the more biologically productive the lake and typically the poorer the water quality.  The scale ranges from zero to over 100.  Ponds in the range between 40 and 50 are considered mesotrophic (moderately productive).  Values greater than 50 are associated with eutrophy (high productivity) and values less than 40 are associated with oligotrophy (low productivity).  Taylor Pond measured at 35.7 by Secchi Disk readings and 39.4 by phosphorous readings (considered the most accurate).  Taylor Pond’s Trophic State as measured by the Secchi disk is lower than the state average of 45.

Dissolved Oxygen Profiles:  The amount of dissolved oxygen is measured at one meter depth intervals throughout the summer.  Generally down to a depth of 5 meters the oxygen level remains at a high level to sustain all animals.  Below 5 meters the oxygen levels early in the summer are high, but as the summer progresses the oxygen levels drop to levels (below 5 ppm) unable to sustain fish and other aquatic animals. Warm water fish (such as Sunfish, Perch, Pickerel and Bass) have no difficulty in Taylor Pond because they stay near the surface where the water is well oxygenated.  Cold water fish (such as Trout and Salmon) need the deeper colder water, below 20 degrees Celsius, to thrive. By August, this colder deeper water no longer contains enough oxygen for the fish.  In addition to the difficulty for fish, oxygen depletion near the bottom of the pond tends to release phosphorous into the water.  This is demonstrated by the higher phosphorous levels found in the bottom grab samples. The oxygen depletion found below 4-8 meters is similar to what we have found in the past and continues to reflect the fragile state of Taylor Pond.  Note: all bottom samples were taken at 12m below the surface to avoid contamination by bottom sediments.

Conclusions:  The conclusions remain unchanged from last year. The water quality of Taylor Pond is considered to be average compared to other Maine lakes.  The potential for an algal bloom continues to be moderate and has not changed significantly from prior years.  Taylor Pond remains one of the 181 Maine lakes on the Maine Department of Environmental Protections Nonpoint Source Priority Watershed list.  This list contains those lakes considered to be threatened or impaired by nonpoint source pollution from land use activities on the surrounding watershed.  In addition the Stormwater Management Law considers Taylor Pond to be a lake “most at risk”.  

Taylor Pond fails to meet standards for the highest water quality due to the depletion of oxygen found at depths below 5 meters during the summer.  In addition, phosphorous levels remain just below the threshold of 15 which could trigger an algal bloom.  Monitoring of Taylor Pond has been conducted regularly since 1975.  During this time there has been no consistent trend in the parameters measured.  Since 2004, the years we have been monitoring Taylor Pond ourselves, there have been no notable algae blooms.   

Because of the shallow depth of the pond (mean depth 17 feet) and low flushing rate (1.34 flushes per year, the number of times the water, on average, empties from the pond) Taylor Pond will likely always remain vulnerable to phosphorous loading and therefore algal blooms.  Because of oxygen depletion of deep water during the summer, the pond will likely never sustain a cold water fishery.  In addition, the oxygen depletion at depths below 5 meters releases an increased amount of phosphorous to the water.  Finally, each new structure or expansion of an existing structure, whether a home, garage, driveway, road, lawn or beach, increases the phosphorous loading of the pond.  

Taylor Pond continues to have many attractive qualities.  The shallow depth means that it quickly warms in the summer to provide excellent swimming close to the towns of Auburn and Lewiston.  It freezes quickly in the winter to provide skating, skiing and ice fishing during the winter.   It has an abundant bass, pickerel, and recently pike populations that thrive in its warm waters and attract people who enjoy fishing.  The Department of Marine Resources considers the pond to be prime spawning habitat for alewives and trucks adult fish above the dams on the Androscoggin River into Taylor Pond.  It has a naturally high level of biologic productivity that sustains an abundant wildlife population for all to enjoy.  It remains a place that never ceases to astound us with its beauty.  

METHODS:  Samples are collected near the deepest point in the pond.  This point has been determined previously and the historic location has been noted on maps available to the samplers.  This spot is reached by boat and verified each time by visual triangulation for Secchi disk readings.  In addition to visual triangulation an ultrasound depth meter is used before collecting core and grab samples.  Grab samples are taken using a Van Dorn Water Sampler.  Core samples are taken with a core sampler  home-manufactured from a 50 foot flexible PVC tube.   The method for grab samples at a specified depth and core samples are done according to the protocol of the Maine Bureau of Land and Water Quality, Division of Environmental Assessment.

COLOR:  Performed on core samples using a Hach color wheel (CO 20-100) and units are in Standard Platinum Units (SPU).

PH: Performed on core samples using a Hach Bromothymol Blue test kit for pH.

CONDUCTANCE:  Performed on core samples using a HM Digital, Inc. Model COM-100 water quality tester for EC/TDS/Temp. Conductivity is measured in uS/cm.

ALKALINITY:  Performed on core samples using a titration method with a Hach color wheel measured in milligram per liter.  

PHOSPHOROUS:  Performed on core samples and bottom grab samples.  Samples are collected in the field, refrigerated and sent to the DHHS lab by mail. Measurements are in parts per billion (ppb). The results are the average of four samples taken once a month from June to September.

SECCHI DISK:  Performed using the method taught by the Maine Volunteer Lake Monitoring Program. Only certified users performed this task. Measurements of depth are in meters.

DISSOLVED OXYGEN:  Performed in the field using a YSI 550A DO meter with 50 foot probe which measures temperature and dissolved oxygen from the surface to maximum depth.  The sampler and meter is yearly certified by the Maine Volunteer Lake Monitoring Program as to method and accuracy. Measurements of dissolved oxygen are in milligrams per liter (mg/l). Water temperature at each depth tested is also recorded.

TROPHIC STATE:  Carlson’s Trophic State Index (TSI) is used in these calculations.  For Secchi disk depth TSI = 60 – 14.41 x (Natural Log of Secchi disk depth in meters). For total phosphorus TSI = 14.42 x (Natural Log of total phosphorous) + 4.15.  

2015 Taylor Pond Water Quality Report 

Woody Trask 10/21/15

This report summarizes the findings of the 2015 water quality monitoring program for Taylor Pond in Auburn, Maine (MIDAS ID#3750). Secchi disc readings were conducted from June through September. Due to having to send the DO meter out for repair, testing for dissolved oxygen, temperature and other parameters was only conducted monthly from July to September. Additional Secchi readings were taken throughout the summer, with several readings taken to coincide with satellite overflights as requested by VLMP. Since 2004 Taylor Pond Association has been collecting its own water samples and performing most tests. Phosphorus analysis was conducted this year by the DHHS Health and Environmental Testing Laboratory.

Result summary: The results were rather conflicting as the clarity of the lake was quite a bit better than last year and the historical average but the Phosphorus readings were slightly higher and have increased slowly over the past three years. This bears watching as higher levels indicate an increase in the likelihood of experiencing algae blooms. No changes in color, pH, alkalinity or conductance were observed.

The ice out date was April 21. The historical average is April 14.

The results of this year’s monitoring are given below:

Parameter2015Mean for Taylor Pond   since 1975 Historical Mean for all Maine Lakes
Color2021.128
pH7.27.06.82
Alkalinity2016.611.9
Conductance8989.946
Total Phosphorous   5m core sample, µg/L 11.7   vs. 11.5 in 2014 10.112    
Total Phosphorous   bottom grab, µg/L 17   vs. 15 in 2014 25.3     (not published)
Secchi depth (meters) minimum4.45   vs. 4.0 in 2014 1.7 (minimum ever recorded)0.5   (0.9 in 2012)
Secchi depth mean (m)5.48   vs. 4.78 in 2014 4.624.81   (5.2 in 2012)
Secchi depth maximum6.09   vs. 5.8 in 2014 6.5 (maximum ever recorded)15.5   (13.4 in 2012)
Trophic State (by Secchi disk)35.5     50.96     45
Trophic State (by core Total Phosphorous)39.6     43.2(not published)

* all bottom samples where taken at 12m depth to avoid contamination by bottom sediments

Color:  Organic material that remains from dead plants and animals provides most of the water color. Lakes drained by areas with more coniferous forests tend to be brown in color due to the slow degradation of the leaves of these trees. Taylor Pond had a color measured at 20 in 2015, which is slightly higher than the reading of 23 for 2014 and lower than the mean for all Maine lakes of 28. When the color is greater than 25 a lake is considered “colored” and the transparency is reduced.

PH:  A measure of the acid-base status of the pond. Taylor Pond had a pH of 7.2 in 2015 which is slightly higher than the mean of 6.82 for all Maine Lakes. Acid rain caused by industrial pollutants can cause the pH in lakes to drop below 6. This drop in pH kills off the healthy zooplankton (microscopic animals) leading to death of fish and overgrowth of algae.   The pH of Taylor Pond has been very stable over the years.

Alkalinity:  A measure of the capacity of the water to buffer against a change in the pH. Taylor Pond’s alkalinity in 2015 was 20 (the same as last year) compared to a mean for all Maine lakes of 11.9. This indicates that our pond is unlikely to have a problem with acidity. The level of alkalinity in Taylor Pond has remained little changed and is not of concern.

Conductance:  Conductance indirectly measures the relative number of dissolved ions in the water — the higher the concentration of ions the greater the conductance. Conductance is used as a rough estimate of the amount of pollutants which usually are present as ions. Although conductance is easy to measure it is not considered highly reliable. Taylor Pond’s conductance for 2015 was 89 compared to a historical mean of 89.9 and a mean of 46 for all Maine lakes.

Total Phosphorous:  The phosphorus Measurement of phosphorous provides the most reliable measure of the capacity of Taylor Pond to have an algal bloom. Algae in Maine waters tend to be limited by the phosphorous content of the water. If you provide enough phosphorous algae grows rapidly. Algae cause depletion of oxygen in the water which kills animal life, colors the water green and when it dies creates unpleasant odors. Taylor Pond’s phosphorous was done using a 5 meter core and bottom grab sampling technique. Taylor Pond’s phosphorous this year averaged 11.7 µg/L which is close to the historical mean of 10.1 and slightly lower than the 12 reported for all Maine lakes. It is also below the critical level of 15, at which level one tends to see algal blooms. Lakes are categorized as oligotrophic (low level of biologic productivity), mesotrophic (intermediate) or eutrophic (high biologic productivity) based on how much phosphorous they contain. A lake with a phosphorous of less than 10 is considered oligotrophic, between 10 and 30 is considered mesotrophic and over 30 is considered eutrophic.

Secchi Disk:  Secchi disk readings provide the easiest method for measuring the clarity of the water. Algae, zooplankton (microscopic animals), natural water color and suspended soil all reduce the transparency of the water. Algae cause most of the change in transparency in Taylor Pond. The mean transparency for 2015 was 5.48, 0.7 meter higher than last year and significantly higher than the historic average for Taylor Pond of 4.62 and higher than the historical average for all Maine lakes. The higher than normal readings may have been due to the unusually dry summer which resulted in less suspended matter being introduced into the pond.

Trophic State:  This is a measure of the biologic productivity of the pond — the higher the number, the more biologically productive the lake and typically the poorer the water quality. The scale ranges from zero to over 100. Ponds in the range between 40 and 50 are considered mesotrophic (moderately productive). Values greater than 50 are associated with eutrophy (high productivity) and values less than 40 are associated with oligotrophy (low productivity). Taylor Pond measured at 35.5 by Secchi Disk readings and 39.6 by phosphorous readings (considered the most accurate). Taylor Pond’s Trophic State as measured by the Secchi disk is lower than the state average of 45.

Dissolved Oxygen Profiles:  The amount of dissolved oxygen is measured at one meter depth intervals throughout the summer. Generally down to a depth of 5 meters the oxygen level remains at a high level to sustain all animals. Below 5 meters the oxygen levels early in the summer are high, but as the summer progresses the oxygen levels drop to levels (below 5 ppm) unable to sustain fish and other aquatic animals. Warm water fish (such as Sunfish, Perch, Pickerel and Bass) have no difficulty in Taylor Pond because they stay near the surface where the water is well oxygenated. Cold water fish (such as Trout and Salmon) need the deeper colder water, below 20 degrees Celsius, to thrive. By August, this colder deeper water no longer contains enough oxygen for the fish. In addition to the difficulty for fish, oxygen depletion near the bottom of the pond tends to release phosphorous into the water. This is demonstrated by the higher phosphorous levels found in the bottom grab sample (17 at 12 meters* depth vs. 11.7 for the 5 meter core sample). The oxygen depletion found below 4-8 meters is similar to what we have found in the past and continues to reflect the fragile state of Taylor Pond.

Conclusions:  The conclusions remain unchanged from last year. The water quality of Taylor Pond is considered to be average compared to other Maine lakes. The potential for an algal bloom continues to be moderate and has not changed significantly from prior years but shows a concerning upward trend. Taylor Pond remains one of the 181 Maine lakes on the Maine Department of Environmental Protections Nonpoint Source Priority Watershed list. This list contains those lakes considered to be threatened or impaired by nonpoint source pollution from land use activities on the surrounding watershed. In addition the Stormwater Management Law considers Taylor Pond to be a lake “most at risk”.

Taylor Pond fails to meet standards for the highest water quality due to the depletion of oxygen found at depths below 5 meters during the summer. In addition, phosphorous levels remain just below the threshold of 15 which could trigger an algal bloom. Monitoring of Taylor Pond has been conducted regularly since 1975. During this time there has been no consistent trend in the parameters measured. In the years we have been monitoring Taylor Pond ourselves, since 2004, there have been no notable algae blooms.

Because of the shallow depth of the pond (mean depth 17 feet) and low flushing rate (1.34 flushes per year, the number of times the water, on average, empties from the pond) Taylor Pond will likely always remain vulnerable to phosphorous loading and therefore algal blooms. Because of oxygen depletion of deep water during the summer, the pond will likely never sustain a cold water fishery. In addition, the oxygen depletion at depths below 5 meters releases an increased amount of phosphorous to the water. Finally, each new structure or expansion of an existing structure, whether a home, garage, driveway, road, lawn or beach, increases the phosphorous loading of the pond.

Taylor Pond continues to have many attractive qualities. The shallow depth means that it quickly warms in the summer to provide excellent swimming close to the towns of Auburn and Lewiston. It freezes quickly in the winter to provide skating, skiing and ice fishing during the winter.   It has an abundant bass and pickerel population that thrives in its warm waters and attracts people who enjoy fishing. The Department of Marine Resources considers the pond to be prime spawning habitat for Alewives and trucks adult fish above the dams on the Androscoggin River into Taylor Pond. It has a naturally high level of biologic productivity that sustains an abundant wildlife population for all to enjoy. It remains a place that never ceases to astound us with its beauty.

METHODS:  Samples are collected near the deepest point in the pond. This point has been determined previously and the historic location has been noted on maps available to the samplers. This spot is reached by boat and verified each time by visual triangulation for Secchi disk readings. In addition to visual triangulation an ultrasound depth meter is used before collecting core and grab samples. Grab samples are taken using a Van Dorn Water Sampler. Core samples are taken with a core sampler home-manufactured from a 50 foot flexible PVC tube.   The method for grab samples at a specified depth and core samples are done according to the protocol of the Maine Bureau of Land and Water Quality, Division of Environmental Assessment.

COLOR: Performed on core samples using a Hach color wheel (CO 20-100) and units are in Standard Platinum Units (SPU).

PH: Performed on core samples using a Hach Bromothymol Blue test kit for pH.

CONDUCTANCE: Performed on core samples using a HM Digital, Inc. Model COM-100 water quality tester for EC/TDS/Temp. Conductivity is measured in uS/cm.

ALKALINITY: Performed on core samples using a titration method with a Hach color wheel measured in milligram per liter.

PHOSPHOROUS: Performed on core samples and bottom grab samples. Samples are collected in the field, refrigerated and sent to the DHHS lab by mail. Measurements are in parts per billion (ppb). The results are the average of four samples taken once a month from June to September.

SECCHI DISK: Performed using the method taught by the Maine Volunteer Lake Monitoring Program. Only certified users performed this task. Measurements of depth are in meters.

DISSOLVED OXYGEN: Performed in the field using a YSI 550A DO meter with 50 foot probe which measures temperature and dissolved oxygen from the surface to maximum depth. The sampler and meter is yearly certified by the Maine Volunteer Lake Monitoring Program as to method and accuracy. Measurements of dissolved oxygen are in milligrams per liter (mg/l). Water temperature at each depth tested is also recorded.

TROPHIC STATE: Carlson’s Trophic State Index (TSI) is used in these calculations. For Secchi disk depth TSI = 60 – 14.41 x (Natural Log of Secchi disk depth in meters). For total phosphorus TSI = 14.42 x (Natural Log of total phosphorous) + 4.15.

2014 Taylor Pond Water Quality Report

by Woody Trask 11/19/2014

This report summarizes the findings of the 2014 water quality monitoring program for Taylor Pond in Auburn, Maine (MIDAS ID#3750). Secchi disc readings, dissolved oxygen, temperature and chemical water testing was conducted monthly from June to September. Additional Secchi readings were taken throughout the summer, with several readings taken to coincide with satellite overflights as requested by VLMP (Volunteer Lake Monitoring Program). Since 2004 Taylor Pond Association has been collecting its own water samples and performing most tests. Phosphorus analysis was conducted this year by the DHHS Health and Environmental Testing Laboratory since the previously used Sawyer Environmental Chemistry Research Laboratory in Orono notified us that they were no longer allowed to do the testing for us.

Result summary: there were no significant changes in water quality compared to 2013.

The results of this year’s monitoring are given below:

Parameter2014Mean for Taylor Pond since 1975Historical Mean for all Maine Lakes
Color2321.128
pH7.27.06.82
Alkalinity2416.511.9
Conductance8789.946
Total Phosphorous 5m core sample, µg/L11.5 vs. 10 in 201310.012
Total Phosphorous bottom grab, µg/L15 vs. 19 in 201325.6     (not published)
Secchi depth (meters) minimum4.0vs. 3.2 in 20131.7 (minimum ever recorded)0.5(0.9 in 2012)
Secchi depth mean (m)4.78 vs. 4.54 in 20134.64.81  (5.2 in 2012)
Secchi depth maximum5.80 vs. 5.54 in 20136.5 (maximum ever recorded)15.5 (13.4 in 2012)
Trophic State (by Secchi disk)37.551.445
Trophic State (by core Total Phosphorous)39.443.3(not published)

Color:  Organic material that remains from dead plants and animals provides most of the water color. Lakes drained by areas with more coniferous forests tend to be brown in color due to the slow degradation of the leaves of these trees. Taylor Pond had a color measured at 23 in 2014, which is slightly higher than the reading of 22 for 2013 and lower than the mean for all Maine lakes of 28. When the color is greater than 25 a lake is considered “colored” and the transparency is reduced.

PH:  A measure of the acid-base status of the pond. Taylor Pond had a pH of 7.2 in 2014 which is slightly higher than the mean of 6.82 for all Maine Lakes. Acid rain caused by industrial pollutants can cause the pH in lakes to drop below 6. This drop in pH kills off the healthy zooplankton (microscopic animals) leading to death of fish and overgrowth of algae.   The pH of Taylor Pond has been very stable over the years.

Alkalinity:  A measure of the capacity of the water to buffer against a change in the pH. Taylor Pond’s alkalinity in 2014 was 24 (vs. 20 last year) compared to a mean for all Maine lakes of 11.9. This indicates that our pond is unlikely to have a problem with acidity. The level of alkalinity in Taylor Pond has remained little changed and is not of concern.

Conductance:  Conductance indirectly measures the relative number of dissolved ions in the water — the higher the concentration of ions the greater the conductance. Conductance is used as a rough estimate of the amount of pollutants which usually are present as ions. Although conductance is easy to measure it is not considered highly reliable. Taylor Pond’s conductance for 2014 was 87 compared to a historical mean of 89.9 and a mean of 46 for all Maine lakes.

Total Phosphorous:  The phosphorus Measurement of phosphorous provides the most reliable measure of the capacity of Taylor Pond to have an algal bloom. Algae in Maine waters tend to be limited by the phosphorous content of the water. If you provide enough phosphorous algae grows rapidly. Algae cause depletion of oxygen in the water which kills animal life, colors the water green and when it dies creates unpleasant odors. Taylor Pond’s phosphorous was done using a 5 meter core and bottom grab sampling technique. Taylor Pond’s phosphorous this year averaged 11.5 µg/L which is close to the historical mean of 10.0 and slightly lower than the 12 reported for all Maine lakes. It is also below the critical level of 15, at which level one tends to see algal blooms. Lakes are categorized as oligotrophic (low level of biologic productivity), mesotrophic (intermediate) or eutrophic (high biologic productivity) based on how much phosphorous they contain. A lake with a phosphorous of less than 10 is considered oligotrophic, between 10 and 30 is considered mesotrophic and over 30 is considered eutrophic.

Secchi Disk:  Secchi disk readings provide the easiest method for measuring the clarity of the water. Algae, zooplankton (microscopic animals), natural water color and suspended soil all reduce the transparency of the water. Algae cause most of the change in transparency in Taylor Pond. The mean transparency for 2014 was 4.78, about the same as last year and about the same as the historic average for Taylor Pond of 4.6 and very close to the average for all Maine lakes.

Trophic State:  This is a measure of the biologic productivity of the pond — the higher the number, the more biologically productive the lake and typically the poorer the water quality. The scale ranges from zero to over 100. Ponds in the range between 40 and 50 are considered mesotrophic (moderately productive). Values greater than 50 are associated with eutrophy (high productivity) and values less than 40 are associated with oligotrophy (low productivity). Taylor Pond measured at 37.5 by Secchi Disk readings and 39.4 by phosphorous readings (considered the most accurate). Taylor Pond’s Trophic State as measured by the Secchi disk is lower than the state average of 45.

Dissolved Oxygen Profiles:  The amount of dissolved oxygen is measured at one meter depth intervals throughout the summer. Generally down to a depth of 5 meters the oxygen level remains at a high level to sustain all animals. Below 5 meters the oxygen levels early in the summer are high, but as the summer progresses the oxygen levels drop to levels (below 5 ppm) unable to sustain fish and other aquatic animals. Warm water fish (such as Sunfish, Perch, Pickerel and Bass) have no difficulty in Taylor Pond because they stay near the surface where the water is well oxygenated. Cold water fish (such as Trout and Salmon) need the deeper colder water, below 20 degrees Celsius, to thrive. By August, this colder deeper water no longer contains enough oxygen for the fish. In addition to the difficulty for fish, oxygen depletion near the bottom of the pond tends to release phosphorous into the water. This is demonstrated by the higher phosphorous levels found in the bottom grab sample (15 at 12 meters* depth vs. 11.5 for the core sample). The oxygen depletion found below 4-8 meters is similar to what we have found in the past and continues to reflect the fragile state of Taylor Pond.

* all bottom samples where taken at 12m depth to avoid contamination by bottom sediments.

Conclusions:

The conclusions remain unchanged from last year. The water quality of Taylor Pond is considered to be average compared to other Maine lakes. The potential for an algal bloom continues to be moderate and has not changed from prior years. Taylor Pond remains one of the 181 Maine lakes on the Maine Department of Environmental Protections Nonpoint Source Priority Watershed list. This list contains those lakes considered to be threatened or impaired by nonpoint source pollution from land use activities on the surrounding watershed. In addition the Stormwater Management Law considers Taylor Pond to be a lake “most at risk”.

Taylor Pond fails to meet standards for the highest water quality due to the depletion of oxygen found at depths below 5 meters during the summer. In addition, phosphorous levels remain just below the threshold of 15 which could trigger an algal bloom. Monitoring of Taylor Pond has been conducted regularly since 1975. During this time there has been no consistent trend in the parameters measured. In the years we have been monitoring Taylor Pond ourselves, since 2004, there have been no notable algae blooms.

Because of the shallow depth of the pond (mean depth 17 feet) and low flushing rate (1.34 flushes per year, the number of times the water, on average, empties from the pond) Taylor Pond will likely always remain vulnerable to phosphorous loading and therefore algal blooms. Because of oxygen depletion of deep water during the summer, the pond will likely never sustain a cold water fishery. In addition, the oxygen depletion at depths below 5 meters releases an increased amount of phosphorous to the water. Finally, each new structure or expansion of an existing structure, whether a home, garage, driveway, road, lawn or beach, increases the phosphorous loading of the pond.

Taylor Pond continues to have many attractive qualities. The shallow depth means that it quickly warms in the summer to provide excellent swimming close to the towns of Auburn and Lewiston. It freezes quickly in the winter to provide skating, skiing and ice fishing during the winter.   It has an abundant bass and pickerel population that thrives in its warm waters and attracts people who enjoy fishing. The Department of Marine Resources considers the pond to be prime spawning habitat for Alewives and trucks adult fish above the dams on the Androscoggin River into Taylor Pond. It has a naturally high level of biologic productivity that sustains an abundant wildlife population for all to enjoy. It remains a place that never ceases to astound us with its beauty.

METHODS:

Samples are collected near the deepest point in the pond. This point has been determined previously and the historic location has been noted on maps available to the samplers. This spot is reached by boat and verified each time by visual triangulation. In addition an ultrasound depth meter is used before collecting core and grab samples. Grab samples are taken using a Van Dorn Water Sampler. Core samples are taken with a core sampler home-manufactured from a 50 foot flexible PVC tube.   The method for grab samples at a specified depth and core samples are done according to the protocol of the Maine Bureau of Land and Water Quality, Division of Environmental Assessment.

COLOR: Performed on core samples using a Hach color wheel (CO 20-100) and units are in Standard Platinum Units (SPU).

PH: Performed on core samples using a Hach Bromothymol Blue test kit for pH.

CONDUCTANCE: Performed on core samples using a HM Digital, Inc. Model COM-100 water quality tester for EC/TDS/Temp. Conductivity is measured in uS/cm.

ALKALINITY: Performed on core samples using a titration method with a Hach color wheel measured in milligram per liter.

PHOSPHOROUS: Performed on core samples and bottom grab samples. Samples are collected in the field, refrigerated and sent to the DHHS lab by mail. Measurements are in parts per billion (ppb). The results are the average of four samples taken once a month from June to September.

SECCHI DISK: Performed using the method taught by the Maine Volunteer Lake Monitoring Program. Only certified users performed this task. Measurements of depth are in meters.

DISSOLVED OXYGEN: Performed in the field using a YSI 550A DO meter with 50 foot probe which measures temperature and dissolved oxygen from the surface to maximum depth. The sampler and meter is yearly certified by the Maine Volunteer Lake Monitoring Program as to method and accuracy. Measurements of dissolved oxygen are in milligrams per liter (mg/l). Water temperature at each depth tested is also recorded.

TROPHIC STATE: Carlson’s Trophic State Index (TSI) is used in these calculations. For Secchi disk depth TSI = 60 – 14.41 x (Natural Log of Secchi disk depth in meters). For total phosphorus TSI = 14.42 x (Natural Log of total phosphorous) + 4.15.

2013 Taylor Pond Water Quality Report

prepared by Woody Trask

This report summarizes the findings of the 2013 water quality monitoring program for Taylor Pond in Auburn, Maine.  Periodic Secchi disc reading were taken by George Sheats. Woody Trask did monthly Secchi readings, dissolved oxygen and chemical water testing.  Since 2004 Taylor Pond Association has been collecting its own water samples and performing most tests.  The Sawyer Environmental Chemistry Research Laboratory in Orono has been performing the phosphorus analysis on water samples mailed to them.

Result summary: there were no significant changes in water quality compared to 2012.

The results of this year’s monitoring are given below:

Parameter  2013  Mean for Taylor Pond since 1975  Historical Mean for all Maine Lakes
Color2221.028
pH7.16.996.82
Alkalinity2016.311.9
Conductance8890.046
Total Phosphorous 5m core sample, µg/L10 vs. 9 in 20129.9712
Total Phosphorous bottom grab, µg/L19 vs. 29 in 201225.9(not published)
Secchi depth (meters) minimum3.2 vs. 4.0 in 20121.7 (minimum ever recorded)0.5 (0.9 in 2012)
Secchi depth mean (m)4.54 vs. 4.47 in 20124.64.81 (5.2 in 2012)
Secchi depth maximum5.54 vs. 5.1 in 20126.5 (maximum ever recorded)15.5 (13.4 in 2012)
Trophic State (by Secchi disk)38.251.845
Trophic State (by core Total   Phosphorous)35.843.4(not published)

* all bottom samples where taken at 12m depth to avoid contamination by bottom sediments.

Color:  Organic material that remains from dead plants and animals provides most of the water color.  Lakes drained by areas with more coniferous forests tend to be brown in color due to the slow degradation of the leaves of these trees.  Taylor Pond had a color measured at 22 in 2013, which was lower than the reading of 26 for 2012 and slightly lower than the mean for all Maine lakes of 23.  When the color is greater than 25 a lake is considered “colored” and the transparency is reduced.

PH:  A measure of the acid-base status of the pond.  Taylor Pond had a pH of 7.1 in 2013 which is slightly higher than the mean of 6.82 for all MaineLakes.  Acid rain caused by industrial pollutants can cause the pH in lakes to drop below 6.  This drop in pH kills off the healthy zooplankton (microscopic animals) leading to death of fish and overgrowth of algae.   The pH of Taylor Pond has been very stable over the years.

Alkalinity:  A measure of the capacity of the water to buffer against a change in the pH. Taylor Pond’s alkalinity in 2013 was 20 (the same as last year) compared to a mean for all Maine lakes of 11.9.  This indicates that our pond is unlikely to have a problem with acidity.  The level of alkalinity in Taylor Pond has remained little changed and is not of concern.

Conductance:  Conductance indirectly measures the relative number of dissolved ions in the water — the higher the concentration of ions the greater the conductance. Conductance is used as a rough estimate of the amount of pollutants which usually are present as ions.  Although conductance is easy to measure it is not considered highly reliable.  Taylor Pond’s conductance for 2013 was 88 compared to a historical mean of 90.1 and a mean of 46 for all Maine lakes.

Total Phosphorous:  The phosphorus Measurement of phosphorous provides the most reliable measure of the capacity of Taylor Pond to have an algal bloom.  Algae in Maine waters tend to be limited by the phosphorous content of the water.  If you provide enough phosphorous algae grows rapidly.  Algae cause depletion of oxygen in the water which kills animal life, colors the water green and when it dies creates unpleasant odors.  Taylor Pond’s phosphorous was done using a 5 meter core and bottom grab sampling technique.  Taylor Pond’s phosphorous this year averaged 10 µg/L which is the same as the historical mean of 9.97 and slightly lower than the 12 reported for all Maine lakes.  It is also below the critical level of 15, at which level one tends to see algal blooms.  Lakes are categorized as oligotrophic (low level of biologic productivity), mesotrophic (intermediate) or eutrophic (high biologic productivity) based on how much phosphorous they contain.  A lake with a phosphorous of less than 10 is considered oligotrophic, between 10 and 30 is considered mesotrophic and over 30 is considered eutrophic.

Secchi Disk:Secchi disk readings provide the easiest method for measuring the clarity of the water.  Algae, zooplankton (microscopic animals), natural water color and suspended soil all reduce the transparency of the water.  Algae cause most of the change in transparency in Taylor Pond.  The mean transparency for 2013 was 4.54, about the same as last year and about the same as the historic average for Taylor Pond of 4.6 but less than the average for all lakes of 5.21.

Trophic State: This is a measure of the biologic productivity of the pond — the higher the number, the more biologically productive the lake and typically the poorer the water quality.  The scale ranges from zero to over 100.  Ponds in the range between 40 and 50 are considered mesotrophic (moderately productive).  Values greater than 50 are associated with eutrophy (high productivity) and values less than 40 are associated with oligotrophy (low productivity).  Taylor Pond measured at 38.1 by Secchi Disk readings and 37.4 by phosphorous readings (considered the most accurate).  Taylor Pond’s TrophicState as measured by the Secchi disk is lower than the state average of 45.

Dissolved Oxygen Profiles:  The amount of dissolved oxygen is measured at one meter depth intervals throughout the summer.  Generally down to a depth of 5 meters the oxygen level remains at a high level to sustain all animals.  Below 5 meters the oxygen levels early in the summer are high, but as the summer progresses the oxygen levels drop to levels (below 5 ppm) unable to sustain fish and other aquatic animals. Warm water fish (such as Sunfish, Perch, Pickerel and Bass) have no difficulty in Taylor Pond because they stay near the surface where the water is well oxygenated.  Cold water fish (such as Trout and Salmon) need the deeper colder water, below 20 degrees Celsius, to thrive. By August, this colder deeper water no longer contains enough oxygen for the fish.  In addition to the difficulty for fish, oxygen depletion near the bottom of the pond tends to release phosphorous into the water.  This is demonstrated by the higher phosphorous levels found in the bottom grab sample (19 at 12 meters* depth vs. 10 for the core sample).  The oxygen depletion found below 4-8 meters is similar to what we have found in the past and continues to reflect the fragile state of Taylor Pond.

Conclusions:  The conclusions remain unchanged from last year. The water quality of Taylor Pond is considered to be average compared to other Maine lakes.  The potential for an algal bloom continues to be moderate and has not changed from prior years.  Taylor Pond remains one of the 181 Maine lakes on the Maine Department of Environmental Protections Nonpoint Source Priority Watershed list.  This list contains those lakes considered to be threatened or impaired by nonpoint source pollution from land use activities on the surrounding watershed.  In addition the Stormwater Management Law considers Taylor Pond to be a lake “most at risk”.

Taylor Pond fails to meet standards for the highest water quality due to the depletion of oxygen found at depths below 5 meters during the summer.  In addition, phosphorous levels remain just below the threshold of 15 which could trigger an algal bloom.  Monitoring of Taylor Pond has been conducted regularly since 1975.  During this time there has been no consistent trend in the parameters measured.  In the years we have been monitoring Taylor Pond ourselves, since 2004, there have been no notable algae blooms.

Because of the shallow depth of the pond (mean depth 17 feet) and low flushing rate (1.34 flushes per year, the number of times the water, on average, empties from the pond) Taylor Pond will likely always remain vulnerable to phosphorous loading and therefore algal blooms.  Because of oxygen depletion of deep water during the summer, the pond will likely never sustain a cold water fishery.  In addition, the oxygen depletion at depths below 5 meters releases an increased amount of phosphorous to the water.  Finally, each new structure or expansion of an existing structure, whether a home, garage, driveway, road, lawn or beach, increases the phosphorous loading of the pond.

Taylor Pond continues to have many attractive qualities.  The shallow depth means that it quickly warms in the summer to provide excellent swimming close to the towns of Auburn and Lewiston.  It freezes quickly in the winter to provide skating, skiing and ice fishing during the winter.   It has an abundant bass and pickerel population that thrives in its warm waters and attracts people who enjoy fishing.  The Department of Marine Resources considers the pond to be prime spawning habitat for Alewives and trucks adult fish above the dams on the AndroscogginRiver into Taylor Pond.  It has a naturally high level of biologic productivity that sustains an abundant wildlife population for all to enjoy.  It remains a place that never ceases to astound us with its beauty.

METHODS:  Samples are collected near the deepest point in the pond.  This point has been determined previously and the historic location has been noted on maps available to the samplers.  This spot is reached by boat and verified each time by visual triangulation for Secchi disk readings by Ralph Gould.  In addition to visual triangulation an ultrasound depth meter is used before collecting core and grab samples.  Grab samples are taken using a Van Dorn Water Sampler.  Core samples are taken with a core sampler  home-manufactured from a 50 foot flexible PVC tube.   The method for grab samples at a specified depth and core samples are done according to the protocol of the Maine Bureau of Land and Water Quality, Division of Environmental Assessment.

COLOR:  Performed on core samples using a Hach color wheel (CO 20-100) and units are in Standard Platinum Units (SPU).

PH and CONDUCTANCE:  Performed on core samples using a Hanna combination meter (temperature, pH and conductance HI 98129) with standardization using buffered control solutions at 7 and 4 and a conductance control solution of 1000.  Conductivity is measured in uS/cm.

ALKALINITY:  Performed on core samples using a titration method with a Hach color wheel measured in milligram per liter.

PHOSPHOROUS:  Performed on core samples and bottom grab samples.  Samples are collected in the field, refrigerated and sent to the Sawyer Laboratory by mail. Measurements are in parts per billion (ppb). The results are the average of five samples taken once a month from June to October.

SECCHI DISK:  Performed using the method taught by the Maine Volunteer Lake Monitoring Program. Only certified users performed this task. Measurements of depth are in meters.

DISSOLVED OXYGEN:  Performed in the field using a YSI 550A DO meter with 50 foot probe which measures temperature and dissolved oxygen from the surface to maximum depth.  The sampler and meter is yearly certified by the Maine Volunteer Lake Monitoring Program as to method and accuracy. Measurements of dissolved oxygen are in milligrams per liter (mg/l). Water temperature at each depth tested is also recorded.

TROPHIC STATE:  Carlson’s Trophic State Index (TSI) is used in these calculations.  For Secchi disk depth TSI = 60 – 14.41 x (Natural Log of Secchi disk depth in meters). For total phosphorus TSI = 14.42 x (Natural Log of total phosphorous) + 4.15.

2012 Taylor Pond Water Quality Report

Prepared by Woody Trask

This report summarizes the findings of the 2012 water quality monitoring program for Taylor Pond in Auburn, Maine.  Monitoring was conducted by Ralph Gould who performed biweekly Secchi readings and I did monthly Secchi readings, dissolved oxygen and chemical water testing.  Since 2004 Taylor Pond Association has been collecting its own water samples and performing most tests.  The Sawyer Environmental Chemistry Research Laboratory in Orono has been performing the phosphorus analysis on water samples mailed to them. There were no significant changes in water quality compared to 2011.

The results of this year’s monitoring are summarized below:

Parameter2012Mean for Taylor Pondsince 1975Historical Mean for all Maine Lakes
Color2621.028
pH7.16.996.82
Alkalinity2016.211.9
Conductance7790.146
Total Phosphorouscore sample, µg/L9vs. 11 in 20119.9712
Total Phosphorousbottom grab, µg/L29vs. 27 in 201126.1(not published)
Secchi depth (meters) minimum4.0vs. 3.9 in 20111.7 (minimum ever recorded)0.5(0.9 in 2012)
Secchi depth mean (m)4.45vs. 4.7 in 20114.64.81(5.2 in 2012)
Secchi depth maximum5.1vs. 5.5 in 20116.5 (maximum ever recorded)15.5(13.4 in 2012)
Trophic State (by Secchi disk)38.552.245
Trophic State (by core Total Phosphorous)35.843.6(not published)

Color:  Organic material that remains from dead plants and animals provides most of the water color.  Lakes drained by areas with more coniferous forests tend to be brown in color due to the slow degradation of the leaves of these trees.  Taylor Pond had a color measured at 26 in 2012, which was higher than the reading of 17 for 2011 and slightly above the mean for all Maine lakes of 23.  When the color is greater than 25 a lake is considered “colored” and the transparency is reduced.

PH:  A measure of the acid-base status of the pond.  Taylor Pond had a pH of 7.1 in 2012 which is slightly greater than the mean of 6.82 for all Maine Lakes.  Acid rain caused by industrial pollutants can cause the pH in lakes to drop below 6.  This drop in pH kills off the healthy zooplankton (microscopic animals) leading to death of fish and overgrowth of algae.   The pH of Taylor Pond has been stable over the years and has not significantly changed.

Alkalinity:  A measure of the capacity of the water to buffer against a change in the pH.  Taylor Pond’s alkalinity in 2012 was 20 (the same as last year) compared to a mean for all Maine lakes of 11.9.  This indicates that our pond is unlikely to have a problem with acidity.  The level of alkalinity in Taylor Pond has remained little changed and is not of concern.

Conductance:  Conductance indirectly measures the relative number of dissolved ions in the water — the higher the concentration of ions the greater the conductance. Conductance is used as a rough estimate of the amount of pollutants which usually are present as ions.  Although conductance is easy to measure it is not considered highly reliable.  Taylor Pond’s conductance for 2012 was 77 compared to a historical mean of 90.1 and a mean of 46 for all Maine lakes.   This does not represent a significant change but is a slightly positive change.

Total Phosphorous:  Measurement of phosphorous provides the most reliable measure of the capacity of Taylor Pond to have an algal bloom.  Algae in Maine waters tend to be limited by the phosphorous content of the water.  If you provide enough phosphorous algae grows rapidly.  Algae cause depletion of oxygen in the water which kills animal life, colors the water green and when it dies creates unpleasant odors.  Taylor Pond’s phosphorous was done using a core and bottom grab sampling technique.  Taylor Pond’s phosphorous this year was 9, which is marginally lower (better) than the historical mean of 9.97 for Taylor Pond and 12 for all Maine lakes.  It is also below the critical level of 15, at which level one tends to see algal blooms.  Lakes are categorized as oligotrophic (low level of biologic productivity), mesotrophic (intermediate) or eutrophic (high biologic productivity) based on how much phosphorous they contain.  A lake with a phosphorous of less than 10 is considered oligotrophic, between 10 and 30 is considered mesotrophic and over 30 is considered eutrophic.

Secchi Disk:  Secchi disk readings provide the easiest method for measuring the clarity of the water.  Algae, zooplankton (microscopic animals), natural water color and suspended soil all reduce the transparency of the water.  Algae cause most of the change in transparency in Taylor Pond.  The mean transparency for 2012 was 4.45, slightly lower than 2011’s average of 4.7, slightly lower than the historic average for Taylor Pond of 4.6 and less than the average for all lakes of 5.21.

Trophic State:  This is a measure of the biologic productivity of the pond — the higher the number, the more biologically productive the lake and typically the poorer the water quality.  The scale ranges from zero to over 100.  Ponds in the range between 40 and 50 are considered mesotrophic (moderately productive).  Values greater than 50 are associated with eutrophy (high productivity) and values less than 40 are associated with oligotrophy (low productivity).  Taylor Pond measured at 38.5 by Secchi Disk readings and 35.8 by phosphorous readings (considered the most accurate).  Taylor Pond’s Trophic State as measured by the Secchi disk is lower than the state average of 45.

Dissolved Oxygen Profiles:   The amount of dissolved oxygen is measured at one meter depth intervals throughout the summer.  Generally down to a depth of 5 meters the oxygen level remains at a high level to sustain all animals.  Below 5 meters the oxygen levels early in the summer are high, but as the summer progresses the oxygen levels drop to levels (below 5 ppm) unable to sustain fish and other aquatic animals. Warm water fish (such as Sunfish, Perch, Pickerel and Bass) have no difficulty in Taylor Pond because they stay near the surface where the water is well oxygenated.  Cold water fish (such as Trout and Salmon) need the deeper colder water, below 20 degrees Celsius, to thrive. By August, this colder deeper water no longer contains enough oxygen for the fish.  In addition to the difficulty for fish, oxygen depletion near the bottom of the pond tends to release phosphorous into the water.  This is demonstrated by the higher phosphorous levels found in the bottom grab sample (29 at 12 meters* depth vs. 9 for the core sample).  The oxygen depletion found below 4-8 meters is similar to what we have found in the past and continues to reflect the fragile state of Taylor Pond.

* all bottom samples where taken at 12m depth in 2012 to avoid contamination by bottom sediments.

Conclusions:

The conclusions remain unchanged from last year. The water quality of Taylor Pond is considered to be average compared to other Maine lakes.  The potential for an algal bloom continues to be moderate and has not changed from prior years.  Taylor Pond remains one of the 181 Maine lakes on the Maine Department of Environmental Protections Nonpoint Source Priority Watershed list.  This list contains those lakes considered to be threatened or impaired by nonpoint source pollution from land use activities on the surrounding watershed.  In addition the Stormwater Management Law considers Taylor Pond to be a lake “most at risk”.

Taylor Pond fails to meet standards for the highest water quality due to the depletion of oxygen found at depths below 5 meters during the summer.  In addition, phosphorous levels remain just below the threshold of 15 which could trigger an algal bloom.  Monitoring of Taylor Pond has been conducted regularly since 1975.  During this time there has been no consistent trend in the parameters measured.  In the years we have been monitoring Taylor Pond ourselves, since 2004, there have been no notable algae blooms.

Because of the shallow depth of the pond (mean depth 17 feet) and low flushing rate (1.34 flushes per year, the number of times the water, on average, empties from the pond) Taylor Pond will likely always remain vulnerable to phosphorous loading and therefore algal blooms.  Because of oxygen depletion of deep water during the summer, the pond will likely never sustain a cold water fishery.  In addition, the oxygen depletion at depths below 5 meters releases an increased amount of phosphorous to the water.  Finally, each new structure or expansion of an existing structure, whether a home, garage, driveway, road, lawn or beach, increases the phosphorous loading of the pond.

Taylor Pond continues to have many attractive qualities.  The shallow depth means that it quickly warms in the summer to provide excellent swimming close to the towns of Auburn and Lewiston.  It freezes quickly in the winter to provide skating, skiing and ice fishing during the winter.   It has an abundant bass and pickerel population that thrives in its warm waters and attracts people who enjoy fishing.  The Department of Marine Resources considers the pond to be prime spawning habitat for Alewives and trucks adult fish above the dams on the Androscoggin River into Taylor Pond.  It has a naturally high level of biologic productivity that sustains an abundant wildlife population for all to enjoy.  It remains a place that never ceases to astound us with its beauty.

METHODS:

Samples are collected near the deepest point in the pond.  This point has been determined previously and the historic location has been noted on maps available to the samplers.  This spot is reached by boat and verified each time by visual triangulation for Secchi disk readings by Ralph Gould.  In addition to visual triangulation an ultrasound depth meter is used before collecting core and grab samples.  Grab samples are taken using a Van Dorn Water Sampler.  Core samples are taken with a core sampler  home-manufactured from a 50 foot flexible PVC tube.   The method for grab samples at a specified depth and core samples are done according to the protocol of the Maine Bureau of Land and Water Quality, Division of Environmental Assessment.

COLOR:  Performed on core samples using a Hach color wheel (CO 20-100) and units are in Standard Platinum Units (SPU).

PH and CONDUCTANCE:  Performed on core samples using a Hanna combination meter (temperature, pH and conductance HI 98129) with standardization using buffered control solutions at 7 and 4 and a conductance control solution of 1000.  Conductivity is measured in uS/cm.

ALKALINITY:  Performed on core samples using a titration method with a Hach color wheel measured in milligram per liter.

PHOSPHOROUS:  Performed on core samples and bottom grab samples.  Samples are collected in the field, refrigerated and sent to the Sawyer Laboratory by mail. Measurements are in parts per billion (ppb). The results are the average of five samples taken once a month from June to October.

SECCHI DISK:  Performed using the method taught by the Maine Volunteer Lake Monitoring Program. Only certified users performed this task. Measurements of depth are in meters.

DISSOLVED OXYGEN:  Performed in the field using a YSI 550A DO meter with 50 foot probe which measures temperature and dissolved oxygen from the surface to maximum depth.  The sampler and meter is yearly certified by the Maine Volunteer Lake Monitoring Program as to method and accuracy. Measurements of dissolved oxygen are in milligrams per liter (mg/l). Water temperature at each depth tested is also recorded.

TROPHIC STATE:  Carlson’s Trophic State Index (TSI) is used in these calculations.  For Secchi disk depth TSI = 60 – 14.41 x (Natural Log of Secchi disk depth in meters). For total phosphorus TSI = 14.42 x (Natural Log of total phosphorous) + 4.15.

5/21/2013

2011 Taylor Pond Water Quality Report   

Prepared by Woody Trask

This report summarizes the findings of the 2011 water quality monitoring program for Taylor Pond in Auburn, Maine.  Monitoring was conducted by Ralph Gould who performed biweekly Secchi readings and I did monthly Secchi readings, dissolved oxygen and chemical water testing.  Since 2004 Taylor Pond Association has been collecting its own water samples and performing most tests.  The Sawyer Environmental Chemistry Research Laboratory in Orono has been performing the phosphorus analysis on water samples mailed to them.

The results of this year’s monitoring are summarized below:

Parameter2011Mean for Taylor Pond (since 1975)Mean for all MaineLakes    Measured in 2011
Color1720.923
pH7.16.996.77
Alkalinity2016.19.3
Conductance7990.541
Total Phosphorouscore sample11109
Total Phosphorousbottom grab27vs. 41 in 2010*26(not published)
Secchi depth (meters) minimum3.9 (after Irene)vs. 4.2 in 20101.7 (minimum ever recorded)0.5 (minimum ever recorded)
Secchi depth mean (m)4.7 same as 20104.65.3
Secchi depth maximum5.5vs. 5.6 in 20106.5 (maximum ever recorded)15.5 (maximum ever recorded)
Trophic    State (by Secchi disk)37.752.642
Trophic    State (by core Total   Phosphorous)38.743.8(not published)

Color:  Organic material that remains from dead plants and animals provides most of the water color.  Lakes drained by areas with more coniferous forests tend to be brown in color due to the slow degradation of the leaves of these trees.  Taylor Pond had a color measured at 17 in 2011, the same as for 2010, which was below the mean for all Maine lakes of 23.  When the color is greater than 25 a lake is considered “colored” and the transparency is reduced.

PH:  A measure of the acid-base status of the pond.  Taylor Pond had a pH of 7.1 in 2011 which is slightly greater than the mean of 6.77 for all MaineLakes.  Acid rain caused by industrial pollutants can cause the pH in lakes to drop below 6.  This drop in pH kills off the healthy zooplankton (microscopic animals) leading to death of fish and overgrowth of algae.   The pH of Taylor Pond has been stable over the years and has not significantly changed.

Alkalinity:  A measure of the capacity of the water to buffer against a change in the pH.  Taylor Pond’s alkalinity in 2011 was 20 (slightly higher than last year) compared to a mean for all Maine lakes of 9.3.  This indicates that our pond is unlikely to have a problem with acidity.  The level of alkalinity in Taylor Pond has remained little changed and is not of concern.

Conductance:  Conductance indirectly measures the relative number of dissolved ions in the water.  The higher the concentration of ions the greater the conductance. Conductance is used as a rough estimate of the amount of pollutants which usually are present as ions.  Although conductance is easy to measure it is not considered highly reliable.  Taylor Pond’s conductance for 2011 was 79 compared to a historical mean of 90.5.   This does not represent a significant change but is a slightly positive change.

Total Phosphorous:  Measurement of phosphorous provides the most reliable measure of the capacity of Taylor Pond to have an algal bloom.  Algae in Maine waters tend to be limited by the phosphorous content of the water.  If you provide enough phosphorous algae grows rapidly.  Algae cause depletion of oxygen in the water which kills animal life, colors the water green and when it dies creates unpleasant odors.  Taylor Pond’s phosphorous was done using a core and bottom grab sampling technique.  Taylor Pond’s phosphorous this year was 11, which is marginally higher than the historical mean of 10.  This is slightly above the average of 9 for all lakes in Maine in 2011.  It is also below the critical level of 15, at which level one tends to see algal blooms.  Lakes are categorized as oligotrophic (low level of biologic productivity), mesotrophic (intermediate) or eutrophic (high biologic productivity) based on how much phosphorous they contain.  A lake with a phosphorous of less than 10 is considered oligotrophic, between 10 and 30 is considered mesotrophic and over 30 is considered eutrophic.

Secchi Disk:  Secchi disk readings provide the easiest method for measuring the clarity of the water.  Algae, zooplankton (microscopic animals), natural water color and suspended soil all reduce the transparency of the water.  Algae cause most of the change in transparency in Taylor Pond.  The mean transparency this year was 4.7, the same as 2010, which is slightly better than the average for Taylor Pond of 4.6 but slightly less than the average for all lakes of 5.3.  A reading of 3.9 was obtained by both Ralph Gould and Woody Trask right after hurricane Irene but had returned to 4.5 only 11 days later.

Trophic State:  This is a measure of the biologic productivity of the pond — the higher the number, the more biologically productive the lake and typically the poorer the water quality.  The scale ranges from zero to over 100.  Ponds in the range between 40 and 50 are considered mesotrophic (moderately productive).  Values greater than 50 are associated with eutrophy (high productivity) and values less than 40 are associated with oligotrophy (low productivity).  Taylor Pond measured at 37.7 by Secchi Disk readings and 38.7 by phosphorous readings (considered the most accurate).  Taylor Pond’s TrophicState as measured by the Secchi disk is lower than the 2011 state average of 42.

Dissolved Oxygen Profiles:  The amount of dissolved oxygen is measured at one meter depth intervals throughout the summer.  Generally down to a depth of 5 meters the oxygen level remains at a high level to sustain all animals.  Below 5 meters the oxygen levels early in the summer are high, but as the summer progresses the oxygen levels drop to levels (below 5 ppm) unable to sustain fish and other aquatic animals. Warm water fish (such as Sunfish, Perch, Pickerel and Bass) have no difficulty in Taylor Pond because they stay near the surface where the water is well oxygenated.  Cold water fish (such as Trout and Salmon) need the deeper colder water, below 20 degrees Celsius, to thrive. By August, this colder deeper water no longer contains enough oxygen for the fish.  In addition to the difficulty for fish, oxygen depletion near the bottom of the pond tends to release phosphorous into the water.  This is demonstrated by the higher phosphorous levels found in the bottom grab sample (27 at 12 meters* depth vs. 11 in a core sample).  The oxygen depletion found below 4-8 meters is similar to what we have found in the past and continues to reflect the fragile state of Taylor Pond.

* all bottom samples where taken at 12m depth in 2011 rather than 13m in order to avoid hitting bottom and stirring up bottom sediments.

Conclusions:

The water quality of Taylor Pond is considered to be average compared to other Maine lakes.  The potential for an algal bloom continues to be moderate and has not changed from prior years.  Taylor Pond remains one of the 181 Maine lakes on the Maine Department of Environmental Protections Nonpoint Source Priority Watershed list.  This list contains those lakes considered to be threatened or impaired by nonpoint source pollution from land use activities on the surrounding watershed.  In addition the Stormwater Management Law considers Taylor Pond to be a lake “most at risk”.

Taylor Pond fails to meet standards for the highest water quality due to the depletion of oxygen found at depths below 5 meters during the summer.  In addition phosphorous levels remain just below the threshold of 15 which could trigger an algal bloom.  Monitoring of Taylor Pond has been conducted regularly since 1975.  During this time there has been no consistent trend in the parameters measured.  In the years we have been monitoring Taylor Pond ourselves, since 2004, there have been no notable algae blooms.

Because of the shallow depth of the pond (mean depth 17 feet) and low flushing rate (1.34 flushes per year, the number of times the water, on average, empties from the pond) Taylor Pond will likely always remain vulnerable to phosphorous loading and therefore algal blooms.  Because of oxygen depletion of deep water during the summer, the pond will likely never sustain a cold water fishery.  In addition, the oxygen depletion at depths below 5 meters releases an increased amount of phosphorous to the water.  Finally, each new structure or expansion of an existing structure, whether a home, garage, driveway, road, lawn or beach, increases the phosphorous loading of the pond.

Taylor Pond continues to have many attractive qualities.  The shallow depth means that it quickly warms in the summer to provide excellent swimming close to the towns of Auburn and Lewiston.  It freezes quickly in the winter to provide skating, skiing and ice fishing during the winter.   It has an abundant bass and pickerel population that thrives in its warm waters and attracts people who enjoy fishing.  The Department of Marine Resources considers the pond to be prime spawning habitat for Alewives and trucks adult fish above the dams on the AndroscogginRiver into Taylor Pond.  It has a naturally high level of biologic productivity that sustains an abundant wildlife population for all to enjoy.  It remains a place that never ceases to astound us with its beauty.

METHODS:

Samples are collected near the deepest point in the pond.  This point has been determined previously and the historic location has been noted on maps available to the samplers.  This spot is reached by boat and verified each time by visual triangulation for Secchi disk readings by Ralph Gould.  In addition to visual triangulation an ultrasound depth meter is used before collecting core and grab samples.  Grab samples are taken using a Van Dorn Water Sampler.  Core samples are taken with a core sampler  home-manufactured from a 50 foot flexible PVC tube.   The method for grab samples at a specified depth and core samples are done according to the protocol of the Maine Bureau of Land and Water Quality, Division of Environmental Assessment.

COLOR:  Performed on core samples using a Hach color wheel (CO 20-100) and units are in Standard Platinum Units (SPU).

PH and CONDUCTANCE:  Performed on core samples using a Hanna combination meter (temperature, pH and conductance HI 98129) with standardization using buffered control solutions at 7 and 4 and a conductance control solution of 1000.  Conductivity is measured in uS/cm.

ALKALINITY:  Performed on core samples using a titration method with a Hach color wheel measured in milligram per liter.

PHOSPHOROUS:  Performed on core samples and bottom grab samples.  Samples are collected in the field, refrigerated and sent to the Sawyer Laboratory by mail. Measurements are in parts per billion (ppb).

SECCHI DISK:  Performed using the method taught by the Maine Volunteer Lake Monitoring Program. Only certified users performed this task. Measurements of depth are in meters.

DISSOLVED OXYGEN:  Performed in the field using a YSI 550A DO meter with 50 foot probe which measures temperature and dissolved oxygen from the surface to maximum depth.  The sampler and meter is yearly certified by the Maine Volunteer Lake Monitoring Program as to method and accuracy. Measurements of dissolved oxygen are in milligrams per liter (mg/l). Water temperature at each depth tested is also recorded.

TROPHIC STATE:  Carlson’s Trophic State Index (TSI) is used in these calculations.  For Secchi disk depth TSI = 60 – 14.41 x (Natural Log of Secchi disk depth in meters). For total phosphorus TSI = 14.42 x (Natural Log of total phosphorous) + 4.15.

5/4/12

2010 Taylor Pond Water Quality Report

Prepared by Woody Trask

This report summarizes the findings of the 2010 water quality monitoring program for Taylor Pond in Auburn, Maine.  Monitoring was conducted by Ralph Gould who performed biweekly Secchi readings and I did monthly Secchi readings, dissolved oxygen and chemical water testing.  Since 2004 Taylor Pond Association has been collecting its own water samples and performing most tests.  The Sawyer Environmental Chemistry Research Laboratory in Orono has been performing the phosphorus analysis on water samples mailed to them.

The results of this year’s monitoring are summarized below:

Parameter2010Mean for Taylor Pond (since 1975)Mean for all MaineLakes    Measured in 2009
Color172128
pH7.126.996.81
Alkalinity19.216.012
Conductance8690.846
Total Phosphorouscore sample111012
Total Phosphorousbottom grab4126(not published)
Secchi depth (meters) minimum4.21.7 (minimum ever recorded)0.5 (minimum ever recorded)
Secchi depth mean4.74.64.81
Secchi depth maximum5.66.5 (maximum ever recorded)15.5 (maximum ever recorded)
Trophic    State (by Secchi disk)385345
Trophic    State (by core Total   Phosphorous)3944(not published)

COLOR:  Organic material that remains from dead plants and animals provides most of the water color.  Lakes drained by areas with more coniferous forests tend to be brown in color due to the slow degradation of the leaves of these trees.  Taylor Pond had a color measured at 17 in 2010 which was below the mean for all Maine lakes of 28.  When the color is greater than 25 a lake is considered “colored” and the transparency is reduced.

PH:  A measure of the acid-base status of the pond.  Taylor Pond had a pH of 7.12 in 2010 which is slightly greater than the mean of 6.81 for all MaineLakes.  Acid rain caused by industrial pollutants can cause the pH in lakes to drop below 6.  This drop in pH kills off the healthy zooplankton (microscopic animals) leading to death of fish and overgrowth of algae.   The pH of Taylor Pond has been stable over the years and has not significantly changed.

Alkalinity:  A measure of the capacity of the water to buffer against a change in the pH.  Taylor Pond’s alkalinity in 2010 was 19.2 compared to a mean for all Maine lakes of 12.0.  This indicates that our pond is unlikely to have a problem with acidity.  The level of alkalinity in Taylor Pond has remained little changed and is not of concern.

Conductance:  Conductance indirectly measures the relative number of dissolved ions in the water.  The higher the concentration of ions the greater the conductance. Conductance is used as a rough estimate of the amount of pollutants which usually are present as ions.  Although conductance is easy to measure it is not considered highly reliable.  Taylor Pond’s conductance for 2010 was 86 compared to a historical mean of 91.   This does not represent a significant change.

Total Phosphorous:  Measurement of phosphorous provides the most reliable measure of the capacity of Taylor Pond to have an algal bloom.  Algae in Maine waters tend to be limited by the phosphorous content of the water.  If you provide enough phosphorous algae grows rapidly.  Algae cause depletion of oxygen in the water which kills animal life, colors the water green and when it dies creates unpleasant odors.  Taylor Pond’s phosphorous was done using a core and bottom grab sampling technique.  Taylor Pond’s phosphorous this year was 11, which is marginally higher than the historical mean of 10.  This is below the average of 12 for all lakes in Maine.  It is also below the critical level of 15, at which level one tends to see algal blooms.  Lakes are categorized as oligotrophic (low level of biologic productivity), mesotrophic (intermediate) or eutrophic (high biologic productivity) based on how much phosphorous they contain.  A lake with a phosphorous of less than 10 is considered oligotrophic, between 10 and 30 is considered mesotrophic and over 30 is considered eutrophic.

Secchi Disk:  Secchi disk readings provide the easiest method for measuring the clarity of the water.  Algae, zooplankton (microscopic animals), natural water color and suspended soil all reduce the transparency of the water.  Algae cause most of the change in transparency in Taylor Pond.  The mean transparency this year was 4.7 which is slightly better than the average for Taylor Pond of 4.6 but slightly less than the average for all lakes of 4.81.

Trophic State:  This is a measure of the biologic productivity of the pond — the higher the number, the more biologically productive the lake and typically the poorer the water quality.  The scale ranges from zero to over 100.  Ponds in the range between 40 and 50 are considered mesotrophic (moderately productive).  Values greater than 50 are associated with eutrophy (high productivity) and values less than 40 are associated with oligotrophy (low productivity).  Taylor Pond measured at 38 by Secchi Disk readings as well as 39 by phosphorous readings (considered the most accurate).  Taylor Pond’s TrophicState as measured by the Secchi disk is lower than the state average of 45.

Dissolved Oxygen Profiles:  The amount of dissolved oxygen is measured at one meter depth intervals throughout the summer.  Generally down to a depth of 5 meters the oxygen level remains at a high level to sustain all animals.  Below 5 meters the oxygen levels early in the summer are high, but as the summer progresses the oxygen levels drop to levels (below 5 ppm) unable to sustain fish and other aquatic animals. Warm water fish (such as Sunfish, Perch, Pickerel and Bass) have no difficulty in Taylor Pond because they stay near the surface where the water is well oxygenated.  Cold water fish (such as Trout and Salmon) need the deeper colder water, below 20 degrees Celsius, to thrive. By August, this colder deeper water no longer contains enough oxygen for the fish.  In addition to the difficulty for fish, oxygen depletion near the bottom of the pond tends to release phosphorous into the water.  This is demonstrated by the higher phosphorous levels found in the bottom grab sample (41 at 13 meters depth vs. 11 in a core sample).  The oxygen depletion found below 4-8 meters is similar to what we have found in the past and continues to reflect the fragile state of Taylor Pond.

Conclusions:

The water quality of Taylor Pond is considered to be average compared to other Maine lakes.  The potential for an algal bloom continues to be moderate and has not changed from prior years.  Taylor Pond remains one of the 181 Maine lakes on the Maine Department of Environmental Protections Nonpoint Source Priority Watershed list.  This list contains those lakes considered to be threatened or impaired by nonpoint source pollution from land use activities on the surrounding watershed.  In addition the Stormwater Management Law considers Taylor Pond to be a lake “most at risk”.

Taylor Pond fails to meet standards for the highest water quality due to the depletion of oxygen found at depths below 5 meters during the summer.  In addition phosphorous levels remain just below the threshold of 15 which could trigger an algal bloom.  Monitoring of Taylor Pond has been conducted regularly since 1975.  During this time there has been no consistent trend in the parameters measured.  In the years we have been monitoring Taylor Pond ourselves, since 2004, there has been no algae blooms.

Because of the shallow depth of the pond (mean depth 17 feet) and low flushing rate (1.34 flushes per year, the number of times the water, on average, empties from the pond) Taylor Pond will likely always remain vulnerable to phosphorous loading and therefore algal blooms.  Because of oxygen depletion of deep water during the summer, the pond will likely never sustain a cold water fishery.  In addition, the oxygen depletion at depths below 5 meters releases an increased amount of phosphorous to the water.  Finally, each new structure or expansion of an existing structure, whether a home, garage, driveway, road, lawn or beach, increases the phosphorous loading of the pond.

Taylor Pond continues to have many attractive qualities.  The shallow depth means that it quickly warms in the summer to provide excellent swimming close to the towns of Auburn and Lewiston.  It freezes quickly in the winter to provide skating, skiing and ice fishing during the winter.   It has an abundant bass and pickerel population that thrives in its warm waters and attracts people who enjoy fishing.  The Department of Marine Resources considers the pond to be prime spawning habitat for Alewives and trucks adult fish above the dams on the AndroscogginRiver into Taylor Pond.  It has a naturally high level of biologic productivity that sustains an abundant wildlife population for all to enjoy.  It remains a place that never ceases to astound us with its beauty.

METHODS:

Samples are collected near the deepest point in the pond.  This point has been determined previously and the historic location has been noted on maps available to the samplers.  This spot is reached by boat and verified each time by visual triangulation for Secchi disk readings by Ralph Gould.  In addition to visual triangulation an ultrasound depth meter is used before collecting core and grab samples.  Grab samples are taken using a Van Dorn Water Sampler.  Core samples are taken with a core sampler  home manufactured from a 50 foot flexible PVC tube.   The method for grab samples at a specified depth and core samples are done according to the protocol of the Maine Bureau of Land and Water Quality, Division of Environmental Assessment.

COLOR:  Performed on core samples using a Hach color wheel (CO 20-100) and units are in Standard Platinum Units (SPU).

PH and CONDUCTANCE:  Performed on core samples using a Hanna combination meter (temperature, pH and conductance HI 98129) with standardization using buffered control solutions at 7 and 4 and a conductance control solution of 1000.  Conductivity is measured in uS/cm.

ALKALINITY:  Performed on core samples using a titration method with a Hach color wheel measured in milligram per liter.

PHOSPHOROUS:  Performed on core samples and bottom grab samples.  Samples are collected in the field, refrigerated and sent to the Sawyer Laboratory by mail. Measurements are in parts per billion (ppb).

SECCHI DISK:  Performed using the method taught by the Maine Volunteer Lake Monitoring Program. Only certified users performed this task. Measurements of depth are in meters.

DISSOLVED OXYGEN:  Performed in the field using a YSI 550A DO meter with 50 foot probe which measures temperature and dissolved oxygen from the surface to maximum depth.  The sampler and meter is yearly certified by the Maine Volunteer Lake Monitoring Program as to method and accuracy. Measurements of dissolved oxygen are in parts per million (ppm).

TROPHIC STATE:  Carlson’s Trophic State Index (TSI) is used in these calculations.  For Secchi disk depth TSI = 60 – 14.41 x (Natural Log of Secchi disk depth in meters). For total phosphorus TSI = 14.42 x (Natural Log of total phosphorous) + 4.15.

5/3/11

2009 Taylor Pond Water Quality Report 

prepared by Dana Little

This report summarizes the findings of the 2009 water quality monitoring program for Taylor Pond in Auburn, Maine.  Monitoring was conducted by Ralph Gould who performed biweekly Secchi readings and myself who did all of the chemical water testing.  Since 2004 Taylor Pond Association has been collecting its own water samples and performing most tests.  The Sawyer Environmental Chemistry Research Laboratory in Orono has been performing the phosphorus analysis on water .

The results of this year’s monitoring are summarized below:

Parameter2009Mean for Taylor Pond (since 1975)Mean for all Maine Lakes Measured in 2009
Color322128
pH7.146.996.81
Alkalinity22.516.012
Conductance1239146
Total Phosphorouscore sample101012
Total Phosphorousbottom grab1126(not published)
Secchi depth (meters) minimum3.81.7 (minimum ever recorded)0.5 (minimum ever recorded)
Secchi depth mean4.74.64.81
Secchi depth maximum5.66.5 (maximum ever recorded)15.5 (maximum ever recorded)
Trophic State (by Secchi disk)375345
Trophic State (by core Total Phosphorous)3744(not published)

COLOR:  Organic material that remains from dead plants and animals provides most of the water color.  Lakes drained by areas with more coniferous forests tend to be brown in color due to the slow degradation of the leaves of these trees.  Taylor Pond had a color measured at 32 in 2009 which is slightly above the mean for all Maine lakes of 28.  When the color is greater than 25 a lake is considered “colored” and the transparency is reduced.

PH:  A measure of the acid-base status of the pond.  Taylor Pond had a pH of 7.14 in 2009 which is slightly greater than the mean of 6.81 for all Maine Lakes.  Acid rain caused by industrial pollutants can cause the pH in lakes to drop below 6.  This drop in pH kills off the healthy zooplankton (microscopic animals) leading to death of fish and overgrowth of algae.   The pH of Taylor Pond has been stable over the years and has not significantly changed.

Alkalinity:  A measure of the capacity of the water to buffer against a change in the pH.  Taylor Pond’s alkalinity in 2009 was 22.5 compared to a mean for all Maine lakes of 12.0.  This indicates that our pond is unlikely to have a problem with acidity.  The level of alkalinity in Taylor Pond has remained little changed and is not of concern.

Conductance:  Conductance indirectly measures the relative number of dissolved ions in the water.  The higher the concentration of ions the greater the conductance. Conductance is used as a rough estimate of the amount of pollutants which usually are present as ions.  Although conductance is easy to measure it is not considered highly reliable.  Taylor Pond’s conductance for 2009 was 123 compared to a historical mean of 91.   This does not represent a significant change.

Total Phosphorous:  Measurement of phosphorous provides the most reliable measure of the capacity of Taylor Pond to have an algal bloom.  Algae in Maine waters tend to be limited by the phosphorous content of the water.  If you provide enough phosphorous algae grows rapidly.  Algae cause depletion of oxygen in the water which kills animal life, colors the water green and when it dies creates unpleasant odors.  Taylor Pond’s phosphorous was done using a core and bottom grab sampling technique.  Taylor Pond’s phosphorous this year was 10, which is equal to the historical mean of 10.  This is below the average of 12 for all lakes in Maine.  It is also below the critical level of 15, at which level one tends to see algal blooms.  Lakes are categorized as oligotrophic (low level of biologic productivity), mesotrophic (intermediate) or eutrophic (high biologic productivity) based on how much phosphorous they contain.  A lake with a phosphorous of less than 10 is considered oligotrophic, between 10 and 30 is considered mesotrophic and over 30 is considered eutrophic.

Secchi Disk:  Secchi disk readings provide the easiest method for measuring the clarity of the water.  Algae, zooplankton (microscopic animals), natural water color and suspended soil all reduce the transparency of the water.  Algae cause most of the change in transparency in Taylor Pond.  The mean transparency this year was 4.7 which is better than the average for Taylor Pond of 4.6 and greater than the average for all lakes of 4.81.

Trophic State:  This is a measure of the biologic productivity of the pond.  The higher the number, the more biologically productive the lake and typically the poorer the water quality.  The scale ranges from zero to over 100.  Ponds in the range between 40 and 50 are considered mesotrophic (moderately productive).  Values greater than 50 are associated with eutrophy (high productivity) and values less than 40 are associated with oligotrophy (low productivity).  Taylor Pond measured at 37 by Secchi Disk readings as well as 37 by phosphorous readings (considered the most accurate).  Taylor Pond’s Trophic State as measured by the Secchi disk is lower than the state average of  45.

Dissolved Oxygen Profiles:  The amount of dissolved oxygen is measured at one meter depth intervals throughout the summer.  Generally down to a depth of 5 meters the oxygen level remains at a high level to sustain all animals.  Below 5 meters the oxygen levels early in the summer are high, but as the summer progresses the oxygen levels drop to levels (below 5ppm) unable to sustain fish and other aquatic animals. Warm water fish  (such as Sunfish, Perch, Pickerel and Bass) have no difficulty in Taylor Pond because they stay near the surface where the water is well oxygenated.  Cold water fish (such as Trout and Salmon) need the deeper colder water, below 20 degrees Celsius, to thrive. By August, this colder deeper water no longer contains enough oxygen for the fish.  In addition to the difficulty for fish, oxygen depletion near the bottom of the pond tends to release phosphorous into the water.  This is demonstrated by the higher phosphorous levels found in the bottom grab sample (11 at 10 meters depth vs. 10 in a core sample).  The oxygen depletion found below 4-8 meters is similar to what we have found in the past and continues to reflect the fragile state of Taylor Pond.

Conclusions:

The water quality of Taylor Pond is considered to be average compared to other Maine lakes.  The potential for an algal bloom continues to be moderate and has not changed from prior years.  Taylor Pond remains one of the 181 Maine lakes on the Maine Department of Environmental Protections Nonpoint Source Priority Watershed list.  This list contains those lakes considered to be threatened or impaired by nonpoint source pollution from land use activities on the surrounding watershed.  In addition the Stormwater Management Law considers Taylor Pond to be a lake “most at risk”.

Taylor Pond fails to meet standards for the highest water quality due to the depletion of oxygen found at depths below 5 meters during the summer.  In addition phosphorous levels remain just below the threshold of 15 which could trigger an algal bloom.  Monitoring of Taylor Pond has been conducted regularly since 1975.  During this time there has been no consistent trend in the parameters measured.  In the years we have been monitoring Taylor Pond ourselves, since 2004, there has been no algae blooms.

Because of the shallow depth of the pond (mean depth 17 feet) and low flushing rate (1.34 flushes per year, the number of times the water, on average, empties from the pond) Taylor Pond will likely always remain vulnerable to phosphorous loading and therefore algal blooms.  Because of oxygen depletion of deep water during the summer, the pond will likely never sustain a cold water fishery.  In addition, the oxygen depletion at depths below 5 meters releases an increased amount of phosphorous to the water.  Finally, each new structure or expansion of an existing structure, whether a home, garage, driveway, road, lawn or beach, increases the phosphorous loading of the pond.

Taylor Pond continues to have many attractive qualities.  The shallow depth means that it quickly warms in the summer to provide excellent swimming close to the towns of Auburn and Lewiston.  It freezes quickly in the winter to provide skating, skiing and ice fishing during the winter.   It has an abundant bass and pickerel population that thrives in its warm waters and attracts people who enjoy fishing.  The Department of Marine Resources considers the pond to be prime spawning habitat for Alewives and trucks adult fish above the dams on the Androscoggin River into Taylor Pond.  It has a naturally high level of biologic productivity that sustains an abundant wildlife population for all to enjoy.  It remains a place that never ceases to astound us with its beauty.

METHODS:

Samples are collected near the deepest point in the pond.  This point has been determined previously and the historic location has been noted on maps available to the samplers.  This spot is reached by boat and verified each time by visual triangulation for Secchi disk readings by Ralph Gould.  In addition to visual triangulation an ultrasound depth meter is used before collecting core and grab samples.  Grab samples are taken using a Van Dorn Water Sampler.  Core samples are taken with a core sampler  home manufactured from a 50 foot flexible PVC tube.   The method for grab samples at a specified depth and core samples are done according to the protocol of the Maine Bureau of Land and Water Quality, Division of Environmental Assessment.

COLOR:  Performed on core samples using a Hach color wheel (CO 20-100) and units are in Standard Platinum Units (SPU).

PH and CONDUCTANCE:  Performed on core samples using a Hanna combination meter (temperature, pH and conductance HI 98129) with standardization using buffered control solutions at 7 and 4 and a conductance control solution of 1000.  Conductivity is measured in uS/cm.

ALKALINITY:  Performed on core samples using a titration method with a Hach color wheel measured in milligram per liter.

PHOSPHOROUS:  Performed on core samples and bottom grab samples.  Samples are collected in the field, refrigerated and sent to the Sawyer Laboratory by mail. Measurements are in parts per billion (ppb).

SECCHI DISK:  Performed using the method taught by the Maine Volunteer Lake Monitoring Program. Only certified users performed this task. Measurements of depth are in meters.

DISSOLVED OXYGEN:  Performed in the field using a YSI 550A DO meter with 50 foot probe which measures temperature and dissolved oxygen from the surface to maximum depth.  The sampler and meter is yearly certified by the Maine Volunteer Lake Monitoring Program as to method and accuracy. Measurements of dissolved oxygen are in parts per million (ppm).

TROPHIC STATE:  Carlson’s Trophic State Index (TSI) is used in these calculations.  For Secchi disk depth TSI = 60 – 14.41 x (Natural Log of Secchi disk depth in meters). For total phosphorus TSI = 14.42 x (Natural Log of total phosphorous) + 4.15.